New Results on Opto-Electronics

K.K. Gan
The Ohio State University

December 4, 2001
Outline

- Introduction
- Preliminary Results on VDC-D3/DORIC-D3
- Results on VDC-I1/DORIC-I1 Irradiation
- Improvements in VDC-I2/DORIC-I2
- Improvements in VDC-I3/DORIC-I3
- Summary
Introduction

- **VCSEL Driver Chip (VDC):**
 - convert LVDS signal into single-ended signal appropriate to drive VCSEL
- **Digital Opto-Receiver Integrated Circuit (DORIC):**
 - decode clock and command signals from PIN diode
Opto-electronics Team

- The Ohio State University:

- Siegen University:
 - Michael Kraemer, Joachim Hausmann, Martin Holder, Michal Ziolkowski
two designs were submitted

- **VDC-D3:**
 - new circuit to decouple bright/dim current adjustments
 - SCT bias circuit

- **VDC-D3P:**
 - same as VDC-D3 but with poly resistor in bias circuit
VCSEL Currents vs I_{set}

dependence of bright/dim currents on I_{set} is as expected
VDC-D3 consumes ~ 17 mA for 10 mA VCSEL current @ 3.2 V
similar to VDC-D2
DORIC-D3

changes:

- new pre-amp with DC feedback to cancel offset at differential inputs
- SCT LVDS driver

preliminary results:

- clock has 50% duty cycle at CMOS driver and before LVDS driver
- clock has 40% duty cycle at LVDS driver
- 100 mV clock-like ripple on 1.6 V delay control line
 - ~ 50 µA minimum PIN current for no bit errors for 2 dice in packages + one die on opto-board III
 - DC feedback is working
September Irradiation of Opto-Electronics

- use 24 GeV proton test beam at T7
- cold box: purely electrical testing of VDC-I1 and DORIC-I1
- shuttle system: testing of 5 optical links on opto-board
Rise Time of Irradiated VDCs Before and After Annealing

annealing produces no significant change

K.K. Gan

ATLAS Pixel Week

10
Fall Time of Irradiated VDCs Before and After Annealing

Annealing produces no significant change

K.K. Gan

ATLAS Pixel Week
Bright Current of Irradiated VDCs Before and After Annealing

- irradiation slightly reduces light output
- annealing slightly increases light output
Packaged DORIC-I1 Irradiation

<table>
<thead>
<tr>
<th>DORIC</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-irrad BER Threshold (µA)</td>
<td>150</td>
<td>?</td>
<td>130</td>
<td>124</td>
<td>102</td>
</tr>
<tr>
<td>Post-irrad BER Threshold (µA)</td>
<td>150</td>
<td>240</td>
<td>129</td>
<td>174</td>
<td>60</td>
</tr>
<tr>
<td>Post-annealing BER Threshold (µA)</td>
<td>104</td>
<td>172</td>
<td>121</td>
<td>149</td>
<td>445</td>
</tr>
<tr>
<td>Pre-irrad Duty Cycle (%)</td>
<td>48.8</td>
<td>?</td>
<td>45.6</td>
<td>47.4</td>
<td>49.2</td>
</tr>
<tr>
<td>Post-irrad Duty Cycle (%)</td>
<td>47.8</td>
<td>43.8</td>
<td>46.0</td>
<td>46.8</td>
<td>47.6</td>
</tr>
<tr>
<td>Post-annealing Duty Cycle (%)</td>
<td>46.8</td>
<td>44.0</td>
<td>44.0</td>
<td>45.4</td>
<td>47.4</td>
</tr>
</tbody>
</table>

- **DORIC #4**: wire bonds crushed ➔ die may be damaged
- **after irradiation and annealing:**
 - ☆ no degradation in bit error threshold except one die
 - ☆ no degradation in clock duty cycle

K.K. Gan

ATLAS Pixel Week
VCSELs have slightly slower rise time after annealing
VCSELs have slightly slower rise time after annealing
Optical Power of Irradiated Opto-board Before and After Annealing

- VCSEL power reaches plateau after a week of annealing
- Fibers with various dosages have same insertion lost: \(\sim 15\% \)
- Failure for VCSEL to anneal is due to radiation damage
Summary of VDC-I1/DORIC-I1 Irradiation

- VDC-I1/DORIC-I1 continue to perform well after 40-50 Mrad
- Changes after irradiation/annealing are small except one die which has much higher bit error threshold
Improvements in VDC-I2/VDC-I3

- **VDC-I2:**
 - ✿ keep OSU design that decouples adjustment of bright and dim currents
 - ✿ new circuit that equalizes bright and dim current consumption
 - ✿ new LBL pads
 - ✿ submitted two designs: single and four-channel VDC

- **VDC-I3:**
 - ✿ further equalize bright and dim current consumption
 - ✿ consume less current
 - ✿ submitted single channel VDC in MPW
Bright and Dim Current Consumption vs I_{set}

- simulation of VDC-I1O reproduces observation
- VDC-I2 has much more equal bright and dim current consumption
- VDC-I3 further equalizes the current consumption
Bright Current vs I_{set} with 10 Ω in Series

- simulation of VDC-I1O reproduces observation
- VDC-I3 has smaller bright current than VDC-I2
- VDC-I3 has a maximum of 22 mA without 10 Ω in series
VDC Current Consumption

- simulation of VDC-I1O reproduces observation
- VDC-I3 consumes significantly less current
VDC-I3
Simulation of DORIC-I1/I2 from Extracted Layout with Stray Capacitance plus Wire Bonds

- **DORIC-I1**: needs large PIN current for no bit errors
 - predict spikes as observed in lab
- **DORIC-I2**: can run at low PIN current (12 µA) with no bit errors

K.K. Gan

ATLAS Pixel Week 23
Improvements in DORIC-I2/DORIC-I3

- DORIC-I2: differential pre-amp
 - numerous improvements

- DORIC-I3: single-ended pre-amp
 - add dummy channel to cancel noise except white noise which adds in quadrature
 - reduce maximum delay (2.0 ⇒ 1.5 x) in delay control loop to further reduce possibility of locking at half frequency
Simulation of DORIC-I3 from Extracted Layout with Stray Capacitance plus Wire Bonds

- predict to decode signal correctly up to
 - \(\pm 3\sigma \) process corners
 - \(\pm 50 \) mV pre-amp offset
Summary

- VDC-D3/DORIC-D3 basically work!
- radiation hardness of VDC-I1/DORIC-I1 appears adequate for pixel system!
- many improvements implemented in VDC-I2/DORIC-I2
- expect VDC-I3 to consume significantly less current
- single-ended pre-amp implemented in DORIC-I3