Optical Link ASICs for LHC Upgrades

The Ohio State University

July 1, 2009
Outline

- Introduction
- VCSEL driver chip
- PIN receiver/decoder chip
- Clock multiplier
- Summary
Introduction

● 1st phase of LHC upgrade is planned for 2014:
 ◆ 3 times increase in luminosity to $3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 ◆ expect significant degradation in the ATLAS pixel detector
 ⇒ add an insertable barrel layer (IBL) at radius of 3.5 cm

● Possible upgrade for on-detector optical readout system for the IBL:
 ◆ add new functionalities to correct for deficiencies in current system
 ◆ upgrade current optical chips to run at higher speed
 ◆ some of the development could be of interest to SLHC upgrade
 ◆ use 130 nm CMOS 8RF process
 ◆ prototype chips received/irradiated in July/August 2008
 ⇒ results will be presented below
Opto-Chips

640 Mb/s VCSEL driver

3.2 Gb/s VCSEL driver

640 MHz clock multipliers
(4 x 160 and 16 x 40 MHz)

PIN receiver/decoder
(40, 160, 320 Mb/s)

K.K. Gan

iWoRiD09

2.6 mm x 1.5 mm
Testing the 130 nm Opto-Chips

- chips were tested in the lab at Ohio State University
- chips were irradiated with 24 GeV protons to SLHC dose at CERN
 - 8 VCSEL drivers: 4 “slow” + 4 “fast”
 - 4 PIN receivers/decoders (purely electrical testing)
 - 4 PIN receivers/decoders coupled to PIN
 - 4 clock multipliers
 - long cables limited testing of drivers/receivers to 40 Mb/s
 - special designed card allows testing of clock multiplier at 640 MHz
VCSEL Driver Chip

- Slow VDC
 - 640 Mb/s
 - ~ 14 mA max

- Fast VDC
 - 640 Mb/s
 - ~ 9 mA max

- Fast VDC
 - 3.2 Gb/s

- both slow/fast chips are working
- LVDS receiver/VCSEL driver work at high speed
 - BER < 10^{-13} @ 4 Gb/s using 10 Gb/s AOC VCSEL
VDC Irradiation

- VDC driving 25 Ω with constant control current (Iset)
- drive current decreases with radiation for constant Iset
 - driver circuit fabricated with thick oxide process
Unirradiated vs. Irradiated VDC

- VDC driving 2.5 Gb/s Optowell VCSEL
- Possible to obtain similar eye diagram by adjusting control currents
 - radiation induced changes in control current circuitry
Threshold Shift in Irradiated PMOS

- Have access to two transistors for characterization
 - simulation with 300 mV threshold shift reproduces observed V vs. I
 - PMOS and NMOS have different threshold voltage shifts
 - will use only PMOS in the current mirror
Receiver/Decoder Chip

- Designed to operate at 40, 160, and 320 Mb/s
 - achieve only 250 Mb/s due to lack of time for design optimization before submission
 - no significant degradation up to SLHC dose
Low Voltage Differential Driver

- output has fast rise and fall times
- output has proper amplitude and baseline
 - small clock jitter, e.g. < 50 ps (1%) @ 160 MHz
 - no significant degradation up to SLHC dose
Single Event Upset

- Single event upset (SEU) measured with receiver/decoder coupled to a Taiwan PIN for 40 Mb/s operation
 - SEU rate much higher for chip coupled to PIN as expected
 - no significant degradation with radiation observed

![Graph showing SEU rate](image)

Chip only

![Graph showing SEU rate](image)

Chip coupled to PIN Diode

K.K. Gan

iWoRiD09
Clock Multiplier

- clock multiplier needed to serialize high speed data
- both 4 x 160 MHz and 16 x 40 MHz clock multipliers work
 - use of recovered clock as input does not increase jitter
Clock Multiplier

- SEU in PIN coupled to data/clock decoder disturbed the input clock
 - Observation confirmed with simulation
- Output clock takes \(\sim 3 \mu s \) to recover
- Two of the four chips lost lock during irradiation
 - Need power cycling to resume operation at 640 MHz
- No change in current consumption

K.K. Gan

![Graph showing current consumption vs. dose](image-url)

![Graph showing transient response](image-url)
Summary

● first 130 nm submission mostly successful
● no significant degradation up to 73 Mrad
 ◆ observe threshold shift in thick oxide transistors
● aim for next iteration in autumn 2009 with new functionalities
 ■ individual control of VCSEL currents
 ■ redundancy: ability to bypass a bad VCSEL/PIN channel