A Novel MT-style Optical Package

K.K. Gan
The Ohio State University

May 25, 2002
Outline

- Introduction
- Design
- Result
- Summary
Introduction

- optical fibers now replacing copper wires in HEP detectors:
 - eliminate electromagnetic interference
 - eliminate ground loops

- commercial VCSEL/PIN packages too bulky for vertex detectors
 - custom design optical packages
 - convert MT fiber connector into an optical package
 - MT-style optical package allows easy mounting/removal of fiber bundle during testing and detector assembly
Design

- good coupled optical power requires good VCSEL alignment:
 - 50 µm in z (along fibre)
 - 25 µm in x and y (transverse to fibre)

- alignment for PIN is not stringent

- machine a pocket on MT connector for placement of base:
 - use alumina as base substrate:
 - ground alumina sheet to proper thickness
 - cut alumina sheet into strips
 - deposit 3D gold traces on strips for wire bondings, VCSEL/PIN placements
 - cut alumina strips into bases
 - 3D traces have good connectivity (~ 94%)
VCSEL Opto-pack Design

- VCSEL
- gold trace
- alumina base
- machined MT connector
- MT connector
- fiber
- guide pin
VCSEL Opto-pack

machined MT connector

wire bond

gold trace

VCSEL
all VCSELs have good coupled power
all VCSELs have good power coupling efficiency
Coupled Power After VCSEL Replacement

- VCSEL can be replaced without damaging adjacent channels
VCSEL opto-pack has fast rise and fall times
MT-style Opto-pack Issues/Limitations

- opto-pack limited to 6 channels due to physical limitations:
 - spacing between fibers is 250 μm for 12-fibers MT connector
 - VCSEL is 250 μm wide

- 8 or 12 channel opto-pack can be fabricated using:
 - 8 or 12-channel VCSEL/PIN array
 - fabricated MT connector with wider fiber spacing
Summary on MT-style Opto-pack

- MT-style opto-pack has good coupled power/efficiency
- MT-style opto-pack is repairable
 - principle of MT-style opto-pack demonstrated