Radiation-Hard/High-Speed VCSEL Array Driver

The Ohio State University

P. Buchholz, M. Ziolkowski
Universität Siegen

March 21, 2014
Outline

- Introduction
- Preliminary design of 10 Gb/s VCSEL array driver
- Summary
Use of VCSEL Arrays in HEP

- Widely used in off-detector (no radiation) data transmission
- First on-detector implementation in pixel detector of ATLAS
 - experience has been positive
 - VCSELs used are humidity sensitive but they were installed in very low humidity location
 - modern VCSELs are humidity tolerant
 - opto-boards removed last summer
 - opto-boards built by OSU have ~0.1% broken links
 - new opto-boards will be installed in a more accessible location
 - new opto-boards will use arrays, including the new layer (IBL)
Opto-Links for Phase II Pixel Detector

- opto-links will be located away from IP after 5 m of electrical cables
- logical to continue the use of arrays due to space limitation and the positive experience, including the ease of handling
 - joint ATLAS/CMS proposal to develop array-based solution is funded by US DOE generic R&D program for three years
Results on 5 Gb/s VCSEL Driver

- 12-channel VCSEL array driver designed using 130 nm CMOS
- Incorporate improvements taking advantage of experience from 1st generation opto-links:
 - redundancy to bypass a broken VCSEL
 - power-on reset in case of communication failure:
 - no signal steering
 - 10 mA modulation current (on current)
 - 1 mA bias current (off current)
- All functionalities successfully implemented
- Performance at 5 Gb/s is satisfactory
Effect of Steering on Optical Eye Diagram

- Spare 1 output with other channels off
- Spare 1 output with all channels active

- Steered channel still passes the mask test
- Jitter increases with all channels active
10 Gb/s VCSEL Driver Status

- Complete layout without bond pads is functional but has high jitter: 23 ps
- Total current consumption ~40 mA
 - 18 mA for the receiver
 - 20 mA for the output driver
Layout

150 µm x 125 µm
CML Receiver Output

M0(11.06ps, 17.02mV)
VCSEL Driver Output Current

M0(21.11ps, -960.2μA)
Future Plan

- Submit a 4-channel version for fabrication in June
 - delivery of ASIC in early September
 - irradiation in late September