Optical Link Driver/Receiver for Silicon Trackers

K.K. Gan
The Ohio State University
January 6, 2004
Pixel/SCT Opto-link

VDC: VCSEL Driver Circuit
DORIC: Digital Optical Receiver Integrated Circuit
VCSEL Driver Chip Upgrade

- SCT/Pixel clock speed: 40 MHz
 ⇒ 80 Mb/s using both clock rising/falling edges to transmit data

- SCT:
 - VDC: two channels/chip, AMS 0.8 \(\mu \text{m} \) bi-polar
 - optical package: 2 Truelight VCSELs + 1 Centronic PIN
 ■ use two data links for redundancy

- Pixel:
 - VDC: four-channels/chip, IBM 0.25 \(\mu \text{m} \) CMOS
 ■ radiation hardness: > 70 Mrad
 - optical package: 8-channel Truelight VCSEL array
 ■ B-layer uses two data links to transmit at 160 Mb/s

- Future: multiply 40 or 80 MHz clock by 8 or 16
 ⇒ 0.64 - 2.56 Gb/s which may be adequate for silicon trackers
Use of VCSEL in Upgrade?

- VCSEL arrays from three vendors can operate at ~2.5 Gb/s
 - continue use of VCSEL but operate at higher speed
 is an attractive upgrade possibility for silicon trackers

- radiation hardness of VCSEL is probably adequate
 - Truelight VCSEL loss ~ 20% of light at ~30 Mrad
 - annealing can recover most of the loss
 - annealing is part of SCT/Pixel operation
 - need irradiation at higher dosage to verify radiation hardness

- Pixel detector uses 8-channel VCSEL with MT ferrule
 - same ferrule can support 12-channel array
 - higher density transmission with small increase in size of fiber ribbon since shielding is a significant contribution
What Gb/s Driver is Available?

- 5 commercial VCSEL drivers with 2.5-10 Gb/s capacity
 - one driver has 12-channel version
 - designed to be compact and work with 12-channel array?
 - all operate at 3.3 V supply voltage
 - most likely fabricated with 0.8 µm technology
 - need to custom design with deep submicron technology to work with VCSEL array

- producing enough voltage to driver VCSEL is a challenge:
 - Truelight VCSEL needs ~1.9 V to produce 10 mA
 - higher current is needed for efficient annealing
 - operating voltage of 0.13 µm chip is 1.2 V
 - thick oxide can operate at 2.5 V
 - need to test irradiation hardness of thick oxide chip
Receiver Chip Upgrade

- **SCT:**
 - DORIC: one channel/chip, AMS 0.8 µm bi-polar
 - optical package: 2 Truelight VCSELs + 1 Centronic PIN

- **Pixel:**
 - DORIC: four-channels/chip, IBM 0.25 µm CMOS
 - Radiation hardness: > 70 Mrad
 - optical package: 8-channel Truelight PIN array

- **Future:** use 12-channel receiver chip with PIN array?
Use Bi-Phase Mark Encoding?

- both SCT and Pixel use bi-phase marked encoding:
 - clock+command are encoded as single signal for transmission
 - receiver chip decodes the signal to extract clock and command
 - guarantee phase relationship between clock and command
 - no baseline shift due to different string of commands because encoded signal has 50% duty cycle

- continue use of bi-phase marked encoding?

![Diagram of 40 MHz clock and command with BPM](image)
What Gb/s Receiver is Available?

- 4 commercial PIN receivers with 1.25-2.5 Gb/s capacity
 - all single channel device
 - all operate at supply voltage of 3.3 V
 - most likely fabricated with 0.8 μm technology
 - need to custom design with deep submicron technology to work with PIN array
Summary

- continue use of VCSEL/PIN arrays but operate at 1-2 Gb/s is a possible upgrade scenario
- design of high-speed driver/receiver will be a major challenge