Tracker Optical Link Upgrade
R&D Plans and Status

K.K. Gan
The Ohio State University
November 10, 2005
Outline

- Experience from Pixel opto-link
- R&D plans
- R&D results
- Summary
Inner Detector Optical Links

- SCT: ~ 12,000 links, including data transmission redundancy
- Pixel: ~ 4,000 links
 - based on SCT design
- both use driver/receiver of similar architecture:
 - VDC: VCSEL Driver Circuit
 - DORIC: Digital Optical Receiver Integrated Circuit
Inner Detector Optical Modules

- **SCT harness:**
 - speed: 40 Mb/s
 - single fiber (fragile)
 - short flex to reduce electromagnetic interference
 - many harness flavors

- **Pixel opto-boards:**
 - speed: 80 Mb/s using both clock rising/falling edges
 - B-layer uses two data links to transmit at 160 Mb/s
 - robust ribbonized fiber
 - ~ 1 meter of micro-twisted pairs
 - much reduced radiation level
 - decouple pixel module & opto-link production
 - greatly simplify construction
 - 2 BeO board flavors
Opto-board Production Experience

- few production problems
- upgrade based on pixel link is widely viewed as logical choice

![Graph showing production of boards over time]

- Predicted vs Actual production for 80 Mb/s and 160 Mb/s boards
- Total failed boards indicated
Bandwidth Requirements

- **Inner Tracker Opto-Link Upgrade by Gan @ Genova:**
 - **pixel tracker:**
 - 320 Mb/s: minimum
 - 640 Mb/s: more conservative
 - retain double links for innermost barrel
 - **strip tracker:**
 - multiple of 40 Mb/s per module

- can current pixel type0 cables & spliced fibers transmit data at 320 or 640 Mb/s?
 - ⇒ R&D
Radiation Hardness of VCSEL/PIN

● VCSEL/PIN from several vendors can operate at Gb/s
 ✷ Can they survive SLHC dosage?
 ■ What is the PIN responsivity after irradiation?
 ■ What is the PIN SEU rate?
 ■ What is the VCSEL optical power after irradiation?
 ■ Can the VCSEL be annealed after irradiation?
 □ What VCSEL current is needed for annealing?
 ★ US plans to characterize VCSEL/PIN from various vendors
 □ design of test system in progress at Ohio State
 ★ SCT group has done neutron irradiations at Ljubljana
 ★ US/Germany plan to do irradiation at PS in 2006
Result on Neutron Irradiation of VCSEL/PIN

- Truelight VCSEL/PIN arrays were irradiated to various dosages with neutrons at Ljubljana reactor
 - PIN arrays not yet analyzed
 - ten 8-channel VCSEL arrays were irradiated:
 - arrays contained broken channels before irradiation
 - arrays were not biased during irradiation
 - after ~30 hours of annealing:
 - 8 arrays irradiated up to 5×10^{15} 1-MeV n$_{eq}$/cm2
 - recover > 70% of optical power
 - 2 arrays irradiated to 10^{16} 1-MeV n$_{eq}$/cm2
 - some channels lost all optical power
Result on 2 Arrays after 10^{16} 1-MeV n_{eq}/cm^2

- VCSEL array #10:
 - 7 working channels before irradiation
 - 1 channel drawing no current
 - 1 channel drawing current but produces no light
 - 2 channels: recover $\sim 70\%$ of optical power after annealing
 - 3 channels: same as above but intermittently

- VCSEL array #2:
 - 3 working channels before irradiation
 - 1 channel drawing no current
 - 1 channel drawing current but produces no light
 - 1 channel: recover $\sim 15\%$ of optical power after annealing
Implications of Neutron Irradiation Results

- VCSEL is not suitable for SLHC if results are confirmed
 - results might be different if intermediate annealing is possible
- ability to recover 70% of optical power on some channels and intermittently on other channels indicates that problems could be mechanical
- irradiation must be repeated with quality arrays
- US/Germany plan to use 24 GeV protons from PS at CERN next year with monitoring and annealing during irradiation
Bandwidth of Type0 Cables

- Pixel modules transmit LVDS to/from opto-links with tiny wires
 - barrel: 140 cm of 100 µm wires
 - disk: 60 cm of 60 µm wires

 mesure bandwidth and compare to Skewclear (150 cm/400 µm)

<table>
<thead>
<tr>
<th></th>
<th>Time (ps) (20-80%)</th>
<th>Rise (ps)</th>
<th>Fall (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel</td>
<td>400</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td>291</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Skewclear</td>
<td>149</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>PCB Trace</td>
<td>128</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>
Eye Diagrams at 350 Mb/s

barrel

Skewclear
disk
Eye Diagrams at 640 Mb/s

Skewclear

barrel
disk
Eye Diagrams at 1 Gb/s

Skewclear

barrel
disk
Summary on Cable Bandwidth

Thinking of using Skewclear? A picture is worth a thousand words…

- transmission at 320 Mb/s may be adequate
- transmission at 640 Mb/s might be acceptable
- ordering custom micro-twisted cables to see if transmission will improve…

K.K. Gan US ATLAS Upgrade Workshop 15
Bandwidth of Spliced Fibers

● Present Pixel: spliced several meters of SIMM with GRIN
 ♦ SIMM: rad-hard pure silica core, low bandwidth
 ♦ GRIN: rad-tolerant, medium bandwidth

● What is the bandwidth of spliced fibers?
 ♦ Result: transmission at 1 Gb/s is quite adequate

20 m fiber

29 m spliced fiber

1 Gb/s
Summary

● R&D in progress on current Pixel infrastructure
 ❖ some Truelight VCSEL arrays die at 10^{16} 1-MeV n_{eq}/cm^2
 ▪ problems might be related to quality of arrays
 ▪ measurements will be repeated, including at PS
 ❖ type0 cable may be adequate up to 640 Mb/s
 ❖ spliced fibers sufficient for 1 Gb/s