Plan for Truelight VCSEL Lifetime Study

K.K. Gan
The Ohio State University

July 26, 2010
Outline

- Introduction
- Optical spectrum of aged VCSEL channels
- Plan on VCSEL lifetime study with opto-boards
- Plan on VCSEL lifetime study with opto-packs
- Candidate VCSELs for new opto-boards
- Industry standard for lifetime/burn-in procedures
- Summary
 Transmission on Skinny Wires

- IBL R&D shows 6 m electrical transmission is adequate for:
 - 40 MHz TTC signal in 36 AWG twisted pairs
 - 160 Mb/s data signal in 28 AWG twisted pairs
- Current Type-0 cables use up to 1.4 m of 38 AWG twisted pairs
 - Ohio State can do a verification of transmission
 with 1.4 m of Type-0 cable plus 4 m of thicker wires
 - Recommend SLAC takes the lead in the test

<table>
<thead>
<tr>
<th>AWG</th>
<th>ID (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>321</td>
</tr>
<tr>
<td>36</td>
<td>127</td>
</tr>
<tr>
<td>38</td>
<td>100</td>
</tr>
</tbody>
</table>
Cause of TX VCSEL Failure

- reliability of supplied VCSELS?
 - sold millions of single-channel VCSEL in TO cans
 - very low numbers for field returns
 - VCSEL in LAr calorimeter also die
 - LHCb out straw tracker has ~1% failure (ULM (Philips))

 - mishandled arrays somehow?
 - thermal stress because array is mounted on FR-4?
 - mechanical stress from optical epoxy covering VCSEL?
 - mechanical stress from Infineon spring connector?
 - chemical reaction between epoxy and VCSEL?
 - damage due to light reflected by epoxy into laser cavity?
 - damage due to humidity?
Optical Spectra of VCSEL

- used channels have narrower spectra
 - similar problem in LAr calorimeter
 - channel with narrower spectrum most likely to die
 - cause of spectrum narrowing not understood
 - very powerful tool for monitoring degradation
Implication for Opto-board

- VCSEL arrays on opto-boards of current pixel detector were fabricated using the process as the TX arrays
 - current accumulated live time ~ 0.05 months
 - TXs start to fail after 6 months of live time
 - expect failure on opto-board VCSEL arrays starting in ~2015
Investigation of TX VCSEL Failure

- Taiwan: lifetime tests for 3 types of arrays
 - test at both room temperature and 70 C
 - with optical epoxy and Infineon connector
 - with optical epoxy but not using the Infineon connector
 - without optical epoxy (using LAPD for readout)
 - perform OSA measurements monthly to look for evidence of spectral narrowing
 - test will start in a week
 - will know in few months on whether epoxy or connector is the cause of the failure

- if epoxy is the problem ⇨ opto-board VCSEL will die
- if connector is the problem ⇨ opto-board VCSEL will be OK
Lifetime Test of Truelight VCSEL

- Siegen is performing test of four opto-boards
 - transmitting clock (50% duty cycle) at room temperature
 - Wuppertal will measure optical spectrum monthly
- similar study of 7-10 boards planned on test system at CERN
 - transmitting clock at all times
 - expect to be ready in ~2 weeks
Lifetime Test of Truelight VCSEL

- Ohio State has found ~50 VCSEL array from original production
 - 400 channels will be monitored
 - represent a significant fraction of final system: 1,788 channels
 - no need to use thermal acceleration
 - ~50% have improperly cured epoxy
- will mount VCSEL on BeO board to emulate detector environment
- will transmit clock at all times
- will keep chamber at ~20°C flushed with N₂
- requested funds from US management to acquire optical spectrum analyzer (OSA) to monitor degradation of spectrum with time
 - ULM (Philips) measure optical spectrum as part of QA
- if some VCSELs in opto-boards/opto-packs fail in 6 months
 - need to extract pixel detector to replace opto-boards
VCSEL Array Vendor

- AOC (formerly Honeywell)
 - large collection of VCSEL publications online
 - most experience in VCSEL reliability studies
 - have access to engineers

- ULM (Philips)
 - visited the company last Monday
 - provide VCSEL for mouse
 - least radiation hard

- Optowell (Korea)
 - no communication with the company!
New VCSELs for Opto-Boards

- IBL R&D resulted in the proposal to use AOC 10 Gb/s arrays for IBL opto-boards
 - chosen to gain experience with 10 Gb/s arrays for SLHC
 - 5 Gb/s array could also be used
 - 11 arrays packaged at Ohio State for lifetime study at Oxford
 - 10 arrays operating DC 10 mA @ 70 C
 - no failures in ~ 2 months
 - will package some arrays for OSA measurement at Wuppertal
 - ~25 10 Gb/s arrays have been packaged for next week irradiation
 - sample can be used to verify reliability for opto-boards of present pixel detector
Accelerated Aging Methods

- Accelerated aging of Truelight VCSEL array conducted at too low temperature
 - opto-board QA:
 - Burn-in at 50 C for three days
 - 10 thermal cycles between -25 and 50 C

- Example of tests by ULM (Philips)
 - 15 samples tested at 85% humidity/85 C test for 1000 hours
 - accelerated lifetime test at 170 C
 - recommended burn-in: 100 C for 24 hour
 - need to ensure all epoxies/encapsulant used can withstand 100 C

- AOC has most experience in VCSEL reliability studies
 - should compare ULM/AOC reliability studies for adaptation for VCSEL arrays on opto-board
Fabrication of New Opto-Boards

- Some conceptual design for opto-board has been done for IBL
 - new opto-pack design based on BeO instead of FR-4
 - has fabricated ~200 opto-packs
 - use wire bonding instead of challenging macro soldering
 - cold solder is a major cause of failures in current opto-links
 - use commercial instead of custom connector
 - much simpler opto-board fabrication procedure

- Achieved the goal of 10 opto-boards/week in previous production
 - should not have problem achieving this rate in new design
 - opto-board design can’t start unless we know the space constrain

- Would love to replace ceramic pins by stainless steel pins
 - how to obtain waiver for using magnetic material?
Summary

- recommend asking SLAC to do a study of long electrical transmission
- Accelerated lifetime test of 4 opto-boards at Siegen and 7-10 opto-boards at SR1
- Propose lifetime of 50 VCSEL arrays at Ohio State
 - should know if VCSEL on opto-boards will fail in 6 months
- AOC 5 or 10 Gb/s arrays are candidates for new opto-boards
- opto-board lifetime test should be conducted at higher temperature