Prototype Opto Chip Results

The Ohio State University

Nov 5, 2008
Outline

- Introduction
- VCSEL driver chip
- PIN receiver/decoder chip
- Clock multiplier
- Summary
Introduction

- Plan for the on-detector opto-link for the IBL:
 - add new functionalities to correct for deficiencies in current system
 - upgrade current optical chips to run at higher speed
 - some of the development could be of interest to SLHC upgrade
 - use IBM 130 nm CMOS 8RF process
 - prototype chips received/irradiated in July/August 2008
 - results will be presented below
Opto-Chips

2.6 mm x 1.5 mm

- 640 Mb/s VCSEL driver
- 3.2 Gb/s VCSEL driver
- 640 MHz clock multipliers (4 x 160 and 16 x 40 MHz)
- PIN receiver/decoder (40, 160, 320 MHz)
Testing the 130 nm Opto-Chips

- chips were tested in the lab at Ohio State University
- chips were irradiated with 24 GeV protons to SLHC dose at CERN
 - 8 VCSEL drivers: 4 “slow” + 4 “fast”
 - 4 PIN receiver/decoder (purely electrical testing)
 - 4 PIN receiver/decoder coupled to PIN
 - 4 clock multiplier
 - long cables limited testing of driver/receiver to 40 Mb/s
 - special designed card allows testing of clock multiplier at 640 MHz
VCSEL Driver Chip

- Slow VDC
 - 640 Mb/s
 - ~ 14 mA max

- Fast VDC
 - 640 Mb/s
 - ~ 9 mA max

- Fast VDC
 - 3.2 Gb/s

- Both slow/fast chips are working
- LVDS receiver/VCSEL driver work at high speed
 - BER < 10^{-13} @ 4 Gb/s using 10 Gb/s AOC VCSEL
- Detailed study in progress
VDC Irradiation

- VDC driving 25 Ω with constant Iset
- Drive current decreases with radiation for constant ISET
- Driver circuit fabricated with thick oxide process
- Need detailed study after cool down
Receiver/Decoder Chip

- Properly decode 40, 80, and 160 Mb/s BPM signals but the design is for 40, 160, and 320 Mb/s operation
- LVDS-like output has proper amplitude and baseline
- Small clock jitter, e.g. < 50 ps (1%) @ 160 MHz
- No significant degradation to SLHC dose

Threshold for 1 bit error/s
Single Event Upset

- Single event upset (SEU) measured with receiver/decoder coupled to a Taiwan PIN for 40 Mb/s operation
- SEU rate much higher with PIN as expected
- No significant degradation with radiation observed
Clock Multiplier

- clock multiplier needed to serialize high speed data
- Both 4 x 160 MHz and 16 x 40 MHz clock multipliers work
 - clock jitter < 8 ps (0.5%)
 - two of the four chips lost lock during irradiation
 - need power cycling to resume operation at 640 MHz
 - no change in current consumption
New Opto-Packs?

- Current Taiwan opto-pack has three deficiencies:
 - VCSEL array is mounted on FR4
 - poor removal of heat
 - poor control of VCSEL temperature
 - difficult soldering of micro leads (250 µm) to BeO board
 - difficult inspection of cold solder

- New BeO based opto-pack has been developed
 - efficient removal of heat
 - good control of VCSEL temperature
 - use wire bonds for connections
 - 55 VCSEL/16 PIN opto-packs have been built for 2006-8 irradiation
New Opto-Pack Housing?

- Current Taiwan opto-pack housing has three deficiencies:
 - two small ears prevent fiber ribbon from dislodging
 - use a needle to pry open the ears for ribbon insertion/removal
 - ears are fragile
 - ribbon is not pushed against the opto-pack
- Replace the housing with a modified MPO connector?
 - more robust commercial design
 - easy to insert and remove fiber ribbon
 - a spring pushes ribbon against the opto-pack
 - use non-magnetic spring
 - need to irradiate MPO connector
 - mold-injection with PEEK may be needed
New VCSEL Array?

- Some Truelight VCSEL arrays developed common serial resistance:
 - not enough voltage to drive a VCSEL array
 - low or no optical power
 - problem not well understood
- Recommend using arrays evaluated for SLHC
 - AOC (5 or 10 Gb/s) or Optowell are leading candidates
 - will study later this month devices irradiated in August 2008
 - need long-term reliability study of ~20 irradiated arrays
 - planned in August 2009
New PIN Array?

- Taiwan PIN arrays have long fall time:
 - limit operating region of off-detector RX
- Recommend using arrays evaluated for SLHC
 - Optowell and Hamamatsu GaAs arrays are leading candidates
 - Hamamatsu silicon PIN diode is also rad-hard
 - need custom fabrication of custom array if interested
 - will study later this month devices irradiated in August 2008
 - need long-term reliability study of ~20 irradiated devices
 - planned in August 2009
Summary

- First 130 nm submission mostly successful
 - full characterization of pre/post irradiation in progress
 - aim for next iteration in winter 2009 with new functionalities
 - individual control of VCSEL currents
 - redundancy: ability to bypass a bad VCSEL/PIN channel
- New opto-pack developed
- VCSEL/PIN characterized for SLHC are good candidates