Opto-Board Prototyping Plan

K.K. Gan
The Ohio State University

February 25, 2009
Outline

- Introduction
- Plan
- What if…
- Summary
Introduction

VCSEL Opto-pack

fibers

VCSEL Driver Chip (VDC)

PIN Receiver (DORIC)
Near-Term Plan

- opto-board has been fabricated:
 - two BeO opto-packs with AOC 5 Gb/s VCSEL array
 - one PCB opto-pack with Taiwan PIN array
 - will operate DORIC as it is (40 MHz)
 - will study decode clock/data after 4-6 meters of type0 cable
 - will measure bit error rate
 - will operate VDC at 160 Mb/s
 - receive LVDS signal after 4-6 meters of type0 cable
 - will study optical signal
 - report the result in June IBL meeting

160 Mb/s at 5 m
Plan in Autumn

- prototype opto-board in FR-4:
 - use a smaller connector
 - current 80-pin JAE connector supports two VCSEL arrays
 - optimize for BeO opto-pack
 - allow for mounting of MPO connector
 - new opto-board will be wider but shorter

LHC housing

MPO

Opto-pack

BeO

VCSEL array

Ceramic guide pin

Fiber

< 2 cm

FR4

MPO
VCSEL/PIN Arrays

- propose to use AOC 5 Gb/s VCSEL/Optowell PIN arrays
 - arrays are fabricated in 4 and 12 channels
 - S-link bandwidth is $8 \times (4 \times 40 \text{ Mb/s})$
 - can only use 8 of the 12 channels in an array
 otherwise we could build 1/3 less opto-boards!
Clock Multiplier

● Two clock multipliers (4 x 160 MHz and 16 x 4 MHz) in 130 nm layout were submitted in March 2008
 ✓ no significant degradation observed after irradiation
 ✗ take μs to recover from SEU in PIN coupled to DORIC
 ◆ observation confirmed with simulation
 ✗ need power cycling after chip latched up with an SEU
 ◆ effect not reproduced in simulation but discovered a fault in implementing SEU tolerance circuitry
Alternatives…

- if there are problems uncovered in the next few months
 - alternative design:
 - DORIC operating at 80 MHz
 - no significant degradation observed in irradiated 130 nm prototype chip
 - VDC operating at 160 Mb/s
 - irradiated 130 nm prototype chip is working
 - build a more robust opto-links:
 - implement redundancy to bypass broken PIN/VCSEL
 - individual control of VCSEL currents
Summary

- first feasibility test by summer
- first prototype by early 2010
- alternative (and better) design available…