Radiation-Hard ASICs for Optical Data Transmission

Abstract— We have designed two ASICs for possible applications in the optical links of a new layer of the ATLAS pixel detector. This new layer is to be installed inside the existing pixel detector for the initial phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for a VCSEL and a receiver/decoder to extract the data and clock from the signal received by a PIN diode. Both ASICs contain 12 channels for operation with a VCSEL or PIN array. The ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. The fabricated receiver/decoder properly decodes the bi-phase marked input stream with low PIN current. We are able to program the ASIC to bypass a broken PIN. The power-on reset circuit is also successfully implemented which sets the ASIC to a default configuration with no signal steering. We are awaiting the delivery of the VCSEL driver but some of the salient features of the design will be described.

I. INTRODUCTION

The Large Hadron Collider (LHC) at CERN (Geneva) is currently the highest energy and luminosity collider in the world. However, planning has already been initiated to increase the design luminosity by a factor of five to 5×10^{34} cm$^{-2}$s$^{-1}$. The ATLAS experiment at the LHC plans to add a new pixel layer to the current pixel detector during the 2013 shutdown. As a result, the optical data transmission will require an upgrade to handle the higher data transmission speed. The upgrade for the optical links will be based on VCSEL and PIN arrays operating at 850 nm as in the current system. In preparation for the upgrade, two new ASICs, a 12-channel array driver and a 12-channel array receiver, have been designed using a 130 nm CMOS process for this new generation of optical links.

The ASICs [1] have been designed using IBM’s 130 nm 8RF-DM CMOS process. The driver couples to a VCSEL array with one channel designated as a spare. Similarly for a receiver/decoder couples to a PIN array. With the inclusion of a remote control interface, this allows redundancy in both directions by enabling a signal to be re-routed from a bad VCSEL or PIN channel. The submitted chip contains twelve VCSEL drivers (VDC), twelve PIN diode receivers/decoders, and the associated circuitry to control the re-routing of the signals to the designated spare channels. All circuitry within the test chip was designed following test results and guidelines from CERN on radiation tolerant design in the 130 nm process used [2]. We have characterized the fabricated receiver/decoder and the results will be presented below.

II. PIN RECEIVER/DECODER ASIC

The PIN receiver/decoder ASIC contains twelve PIN diode receiver/pre-amplifiers. For the inner eight channels, each circuit also contains a 40 Mb/s bi-phase mark (BPM) clock/data recovery circuit with low voltage differential signal (LVDS) outputs for both the clock and data transmission to a front-end (FE) chip of a pixel module. A five-channel multiplexer has been inserted in the post amplification path of each channel. If the PIN diode in one of the inner eight channels is non-functional, the multiplexer for that channel would accept the signal from a spare channel so that the BPM signal can be decoded for transmission to the appropriate FE chip. All circuits are designed to operate with a 1.5 V power supply. A block diagram of the ASIC is shown in Fig. 1.

In order to allow remote control over channel steering and other functionality within the chip, a command decoder has been included for each of the inner eight channels. The command decoder was designed for the FE chips of the new pixel layer. The command processor will act if a valid command is received on any command decoder. This allows working control if only one PIN channel is still alive. Because the chips will be resided in a high radiation environment, special care was taken to improve the single event upset (SEU) tolerance of the command decoder. In addition, all latches are based on a dual interlocked storage cell (DICE) latch designed for use in the configuration memory of the FE chips of the pixel detector.

The clock/data recovery circuits of all channels can properly decode the data at 40 Mb/s with no bit errors for low input PIN currents. The PIN current threshold (amplitude) for no bit errors is < 20 µA with only single channel active. The
PIN current thresholds are 40-60 μA for all channels active with or without spares channels being steered over full length of the chip. These are higher than we would like and might be due to the long lead connecting the circuit to a PIN diode or problems with the supply routing/decoupling on the circuit board used to test the chips. These problems are under investigation. However, we expect to operate the chip with at least 100 μA of PIN current to minimize SEU induced by traversing charged particle and hence the above acceptable.

Figure 2 shows the eye diagrams of the recovered data and clock. The rise and fall times are ~0.5 ns. The clock jitter (peak-to-peak) at 40 Mb/s is ~1.4 ns for both single-speed and multi-speed channels. For the multi-speed channel, the jitter is smaller at higher operating speed, as little as ~100 ps at 320 Mb/s. It should be noted that the multi-speed channel requires external bias tuning for proper operation at 160 and 320 Mb/s due to the limited dynamic range of the clock duty cycle control circuitry. The steering circuit functions properly, i.e. signal received at the spare DORIC channel can be rerouted through the other DORIC channels. However, this can only be excised via the test port because the scan chain enable of the command decoder was left floating due to a miscommunication with the designer of the command decoder.

![Image](image-url)

Fig. 2. Eye diagram of recovered data (top) and clock (bottom).

After you have obtained the Xplore-compatible PDF file, log on to the NSS-MIC conference web site (http://www.nss-mic.org/2011) using the username and password for your abstract submission. Go to the “My Submissions” link and check that your paper title and author list are consistent with those in your manuscript. Make appropriate changes using the “Update Abstract” button if needed. Click on the “Upload manuscript” button to transfer your PDF file. Your PDF file will be checked again for Xplore-compatibility. PDF files that fail the check will not be included in the Conference Record CD. Do not upload or submit the original Word document, nor any other non-PDF file type.

An IEEE Copyright Form should be submitted electronically at the same time your Xplore-compatible manuscript is submitted. Click on the “Submit Copyright Form” button on the “My Abstracts” link and follow the instructions. Each manuscript submitted to the Conference Record must be accompanied by a corresponding copyright form.

III. Math

Use either the Microsoft Equation Editor or the MathType add-on for all math objects in your paper (Insert | Object | Create New | Microsoft Equation or MathType Equation). "Float over text" should not be selected.

A math object is any equation or fragment containing mathematical symbols (including Greek characters, superscripts and subscripts) that appears either in-line (in the flow of normal text) or as a display equation (in its own space between lines of text).

You should avoid using Word fonts or symbols for in-line single variables with superscripts or subscripts. Use italics for emphasis; do not underline. Turn off "smart quotes" (Tools | AutoCorrect | AutoFormat tabs). Turn off automatic hyphenation (Tools | Language | Hyphenation).

IV. Units

Use either SI (MKS) or CGS as primary units. (SI units are strongly encouraged.) English units may be used as secondary units (in parentheses). An exception is when English units are used as identifiers in trade, such as "3.5 inch disk drive." Avoid combining SI and CGS units, such as mass in kilograms and volume in cubic centimeters. This often leads to confusion because equations may not balance dimensionally. If you must use mixed units, clearly state the units for each quantity in an equation.

V. Helpful Hints

A. Figures and Tables

Use the abbreviation "Fig." throughout the text of your manuscript, even at the beginning of a sentence, as well as in the figure captions. Do not abbreviate "Table." Tables are numbered with Roman numerals. Do not put borders around your figures.

Figure axis labels are often a source of confusion. Use words rather than symbols. As an example, write the quantity "Energy," or "Energy, E," not just "E." Put units in parentheses. Do not label axes only with units. As in Fig. 1, for example, write "Energy (MeV/u)" or "Energy ()," not just "MeV/u." Do not label axes with a
ratio of quantities and units. For example, write "Temperature (K)," not "Temperature/K."

Multipliers can be especially confusing. Write "Dose (krd/s)" or "Dose (10^3 rd/s)." Do not write "Dose(10^3 /s)" because the reader would not know whether an axis label of 16 meant 16000 rd/s or 0.016 rd/s. Figure labels should be legible, approximately 8 to 10 point type.

To provide consistent reproducibility, please include axes and tick marks on all four sides of your graphs and avoid the use of grid lines (note that grid lines tend to clutter a graph if dark or reproduce poorly if light). Please also include an explanatory legend within your graphs when two or more curves or sets of data are included. Avoid explaining the different symbols and curves in the figure caption alone - using a legend results in a much more easily understood figure.

B. References

Number citations consecutively in square brackets [1]. The sentence punctuation follows the brackets [2]. Multiple references [2], [3] are each numbered with separate brackets [1][2], [1][3]. When citing a section in a book, please give the relevant page numbers [2]. In sentences, refer simply to the reference number, as in [3]. Do not use "Ref. [3]" or "reference [3]" except at the beginning of a sentence: "Reference [3] shows ... " Type the reference list at the end of the paper using the "References" style.

Please note that the references at the end of this document are in the preferred referencing style. Give all authors’ names; do not use “et al.” unless there are six authors or more. Use a space after authors’ initials. Papers that have not been published should be cited as “unpublished” [4]. Papers that have been submitted for publication should be cited as “submitted for publication” [5]. Papers that have been accepted for publication, but not yet specified for an issue should be cited as “to be published” [6]. Please give affiliations and addresses for private communications [7].

Capitalize only the first word in a paper title, except for proper nouns and element symbols. For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation [8].

C. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have already been defined in the abstract. Abbreviations such as IEEE, SI, ac, and dc do not have to be defined. Abbreviations that incorporate periods should not have spaces: write "C.N.R.S.," not "C. N. R. S." Do not use abbreviations in the title unless they are unavoidable (for example, IEEE in the title of this article).

D. Equations

Number equations consecutively with equation numbers in parentheses flush with the right margin, as in (1). To make your equations more compact, you may use the solidus (/), the exp function, or appropriate exponents. Use parentheses to avoid ambiguities in denominators. Punctuate equations when they are part of a sentence, as in

\[\int_0^\infty F(r, \varphi) \, dr \, d\varphi = [\sigma \mu_i/(2\mu_0)] \]

\[\int_0^\infty \exp(-\lambda |z_n - z_i|) \, \lambda^{-1} J_1(\lambda r_j) \, J_0(\lambda r_i) \, d\lambda. \]

Be sure that the symbols in your equation have been defined before the equation appears or immediately following. Refer to "(1)," not "Eq. (1)" or "equation (1)," except at the beginning of a sentence: "Equation (1) is ..."

E. Other Recommendations

Use one space after periods and colons. Hyphenate complex modifiers: "zero-field-cooled magnetization." Avoid dangling participles, such as, "Using (1), the potential was calculated." Write instead, "The potential was calculated by using (1)," or "Using (1), we calculated the potential."

Use a zero before decimal points: "0.25," not ".25." Use "cm^3," not "cc." Indicate sample dimensions as "0.1 cm x 0.2 cm," not "0.1x0.2 cm²." Do not mix complete spellings and abbreviations of units: use "J/cm²" or "fluence per square centimeter," not "fluence/cm²." When expressing a range of values, write "7 to 9," not "7-9" or "7-9," except for references [1]-[3].

Use the correct format for scientific notation in text, tables, and figures. Computer notation of "E" for \(10^5\) is not permitted. For example, numbers expressed as 6.02E-3, instead of 6.02\(\times 10^{-3}\), are not acceptable.

A parenthetical statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.) In American English, periods and commas are within quotation marks, like "this period." Other punctuation is "outside!"

If you wish, you may write in the first person singular or plural and use the active voice ("I observed that ...," or "We observed that ..." rather than "It was observed that ...). If your native language is not English, please get a native English-speaking colleague to proofread your paper.

VI. SOME COMMON MISTAKES

The word "data" is plural, not singular. The subscript for the permeability of vacuum \(\mu_0 \) is zero, not a lowercase letter "o." Use the word "micrometer" instead of "micron." A graph within a graph is an "inset," not an "insert." The word "alternatively" is preferred to the word "alternately" (unless you really mean something that alternates). Do not use the word "essentially" to mean "approximately" or "effectively." Be aware of the different meanings of the homophones "affect" and "effect," "complement" and "compliment," "discreet" and "discrete," "principal" and "principle." Do not confuse "imply" and "infer." The prefix "non" is not a word; it should be joined to the word it modifies, usually without a hyphen. There is no period after the "et" in the Latin abbreviation "et al." The abbreviation "i.e." means "that is," and the abbreviation "e.g."

APPENDIX

Appendices, if needed, appear before the acknowledgment.

ACKNOWLEDGMENT

We thank Tony Seibert for writing the original version of this document.

REFERENCES