JOURNAL REFERENCES

 

This reference list is used in lecture, often when describing the history of the development of the field. I do not try to keep this list up-to-date with the current best results.

 

References (organized by section and sorted by author)

1)      Linear pulse propagation

2)      Non-linear optics

3)      Short pulse generation and amplification

4)      Characterization of short pulses

5)      Experimentation

6)      Some topics in UF

 

Selected References organized by topic and sorted chronologically

1)      KLM and the development of ultrashort seed pulses

2)      Amplifier development using Ti:Sapphire

3)      FROG

 

Ignore this table - it's for my use creating this reference list.

AO

App. Opt.

Applied Optics

JOSA

J. Opt. Soc. Am.

Journal of the Optical Society of America

JOSAA

J. Opt. Soc. Am. A

Journal of the Optical Society of America A

JOSAB

J. Opt. Soc. Am. B

Journal of the Optical Society of America B

OC

Opt. Commun.

Optics Communications

OL

Opt. Lett.

Optics Letters

JQE

IEEE J. Quant. Elect.

IEEE Journal of Quantum Electronics

LP

Laser Phys.

Laser Physics

PRL

Phys. Rev. Lett.

Physical Review Letters

PRA

Phys. Rev. A

Physical Review A

RMP

Rev. Mod. Phys.

Review of Modern Physics

RSI

Rev. Sci. Instrum.

Review of Scientific Instruments

STQE

IEEE J. Sel. Top. Quant. Elect.

IEEE Journal of Selected Topics in Quantum Electronics

 

k  klm and the development of ultrashort seed pulses

a  amplifier development using Ti:Sapphire

f  frog

 

 

 

 

References
(organized by section and sorted by author)

1)    Linear pulse propagation (back to top)

 

 

 

 

 

Fork

1984

Negative dispersion using pairs of prisms, R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150 (1984).

One of the first, esp. as applied to ultrafast lasers.

 

Fork

1986

Optical frequency filter for ultrashort pulses, R. L. Fork, Opt. Lett. 11, 629 (1986).

Using pairs of prisms for dispersion control and filtering.

 

Teague

1980

Image analysis via the general theory of moments, Michael Teague, J. Opt. Soc. Am. 70, 920 (1980).

An early paper on the subject. Uses “standard moments” and a new set.

 

Treacy

1969

Optical Pulse Compression With Diffraction Gratings, Edmond Treacy, IEEE J. Quant. Elect. 5, 454 (1969).

A classic. GVD using parallel gratings.

 

Martinez

1987

3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 mu m region, O. Martinez, IEEE J. Quant. Elect. 23, 59 (1987).

A classic. GVD using anti-parallel gratings.

 

Kempe

1992

Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems, M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, J. Opt. Soc. Am. B 9, 1158 (1992).

A lens does more than just focus when ultrashort pulses are used.

 

Walmsley

2001

The role of dispersion in ultrafast optics, Ian Walmsley, Leon Waxer, and Christophe Dorrer, Rev. Sci. Instrum. 72, 1 (2001).

Thorough review covering the same topics considered in this course.

 

 

 

 

 

 

2)    Non-linear optics (back to top)

 

 

 

 

 

Alfano

1970

Emission in the region 4000 to 7000 A via four-photon coupling in glass, R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970).

AND

“Observation of self-phase modulation and small-scale filaments in crystals and glasses,” R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).

First observation of SCG.

 

Brabec

1997

Nonlinear optical pulse propagation in the single-cycle regime, Thomas Brabec and Ferenc Krausz, Phys. Rev. Lett. 78, 3282 (1997).

An important work allowing generalization of the NLS for use with short pulses.

 

Brodeur

1997

Moving focus in the propagation of ultrashort laser pulses in air, A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, Opt. Lett. 22, 304 (1997).

 

 

Franken

1961

Generation of optical harmonics, P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).

First observation of SHG.

 

Kelley

2000

The nonlinear index of refraction and self-action effects in optical propagation, P. L. Kelley, IEEE J. Sel. Top. Quant. Elect. 6, 1259 (2000).

 

 

Ranka

2000

Visable continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz, Opt. Lett. 25, 25 (2000).

An important new medium that allows SCG using nJ short pulses.

 

Rothenberg

1992

Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses, Joshua E. Rothenberg, Opt. Lett. 17, 1340 (1992).

Perhaps the first treatment of this effect.

 

Strickland

1994

Resistance of short pulses to self-focusing, D. Strickland and P. B. Corkum, J. Opt. Soc. B 11, 492 (1994).

Treats moving focus model.

 

 

 

 

 

 

3)    Short pulse generation and amplification (back to top)

 

 

 

 

 

Asaki

1993

Generation of 11-fs pulses from a self-mode-locked Ti:Sapphire laser, Melanie Asaki, et. al, Opt. Lett. 18, 977 (1993).

 

k

Backus

1995

Ti:Sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz, Opt. Lett. 20, 2000 (1995).

Multi: 21 fs, 1 mJ, 1 kHz.

a

Backus

1998

High Power Ultrafast Lasers, S. Backus, C. G. Durfee III, M. M. Murnane, H. C. Kaptetn, and H. Nathel, Rev. Sci. Instrum. 69, 1207 (1998).

 

 

Barty

1994

Multiterawatt 30-fs Ti:Sapphire laser system, C. P. J. Barty, C. L. Gordon III and B. E> Lemoff, Opt. Lett. 19, 1442 (1994).

Regen/multi: 30 fs, 125 mJ, 10 Hz.

a

Barty

1995

Regenerative pulse shaping and amplification of ultrabroadband optical pulses, C. P. J. Barty, et. al, Opt. Lett. 21, 219 (1996).

Regen: 10 fs, 5 mJ, 50 Hz.

a

Barty

1996

Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification, C. P. J. Barty,  et. al, Opt. Lett. 21, 668 (1996).

Regen/multi: 18 fs, 80 mJ, 50 Hz.

a

Barty

1996

Ten-femtosecond amplifier creates multiterawatt pulses, Christopher Barty, Laser Focus World, June 1996.

Good tutorial.

 

Christov

1995

Space-time focusing of femtosecond pulses in a Ti:Sapphire laser, I. P. Christov, H. C. Kapteyn, M. M. Murnane, C-P Huang, and J. Zhou, Opt. Lett. 20, 309 (1995).

3D model of pulse propagation in a KLM.

 

Fork

1981

Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, R. L. Fork, B. I. Greene, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).

First CPM.

 

Fork

1983

Femtosecond optical pulses, R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann, IEEE J. Quant. Elect. 19, 500 (1983).

Good, intuitive review at early development of CPM.

 

Haus

2000

Mode-locking of lasers, Herman Haus, IEEE J. Sel. Top. Quant. Elect. 6, 1173 (2000).

Good treatment with survey of all major mechanisms.

 

Kmetec

1991

0.5-TW, 125-fs Ti:sapphire laser, J. D. Kmetec, J. J. Macklin, and J. F. Young, Opt. Lett. 16, 1001 (1991).

Regen/multi: 125 fs, 60 mJ, 0.6 Hz.

a

Kogelnik

1966

Laser beams and resonators, H. Kogelnik and T. Li, App. Opt. 5, 1550 (1966).

A classic. What was read before there were texts.

 

Kogelnik

1972

Astigmatically compensated cavities for CW dye laser, Herwig Kogelnik, Erich Ippen, Andrew Dienes, and Charles Shank, IEEE J. Quant. Elect. 8, 373 (1972).

A classic. Technique used in modelocked lasers too.

 

Lemoff

1993

Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses, B. E. Lemoff and C. P. J. Barty, Opt. Lett. 18, 1651 (1993).

 

 

Maine

1988

Generation of ultrahigh peak power pulses by chirped pulse amplification, P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quant. Elect. 24, 398 (1988).

 

 

New

1974

Pulse evolution in mode-locked quasi-continuous lasers, Geoffrey New, IEEE J. Quant. Elect. 10, 115 (1974).

Important for systems using saturable gain/saturable absorbers.

 

Rudd

1993

Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier, J. V. Rudd, et. al, Opt. Lett. 18, 2044 (1993).

One of the first kHz Ti:Sapphire systems. Regen: 40 fs, 0.7 mJ, 1 kHz.

a

Spence

1991

60-fs pulse generation from a self-mode-locked Ti:sapphire laser, D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).

First instance of KLM.

k

Spielmann

1994

Ultrabroadband femtosecond lasers, Christian Spielmann, Peter Curley, Thomas Brabec, and Ferenc Krausz, IEEE J. Quant. Elect. 30, 1100 (1994).

Review of  oscillator operation using Ti:Sapphire and other media.

 

Squire

1991

100-fs pulse generation and amplification in Ti:Al2O3, Jeff Squire, Francois Salin, Gerard Mourou, and Donald Harter, Opt. Lett. 16, 324 (1991).

Perhaps the first ultrafast, high-power Ti:Sapphire system. Regen: 100 fs, 1 mJ, 20 Hz.

a

Strickland

1985

Compression of amplified chirped optical pulses, D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).

First CPA.

 

Strohkendl

1993

Highly stable amplification of femtosecond pulses, F. P. Strohkendl, D. J. Files, and L. R. Dalton, J. Opt. Soc. Am. B 11, 742 (1994).

RMS fluctuation down to 0.42 %.

 

Sullivan

1991

Multiterawatt, 100-fs laser, A. Sullivan, et. al, Opt. Lett. 16, 1406 (1991).

Multi : 95 fs, 450 mJ, 5 Hz.

a

White

1993

Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems, W. E. White, F. G. Patterson, R. L. Combs, D. F. Price and R. L. Shepperd, Opt. Lett. 18, 1343 (1993).

 

a

Valdmanis

1986

Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain, Janis Valdmanis and R. L. Fork.

How-to manual for a CPM.

 

Zeek

1999

Pulse compression by use of deformable mirrors, Erik Zeek, et. al, Opt. Lett. 24, 493 (1999).

Now the method of choice when only phase corrections are desired.

 

Zhou

1993

Generation of 21-fs  millijoule-energy pulses by use of Ti:sapphire, J. Zhou, et. al, Opt. Lett. 19, 126 (1993).

Multi: 21 fs, 0.5 mJ, 10 Hz.

a

Zhou

1994

Pulse evolution in a broad-bandwidth Ti:Sapphire laser, Jianping Zhou, et. al, Opt. Lett. 19, 1149 (1994).

Suggests 10 fs pulses limited by 4th order dispersion.

k

Zhou

1995

Space-time focusing of femtosecond pulses in a Ti:sapphire laser, Opt. Lett. 20, 309 (1995).

Pulse evolution in an oscillator.

k

Zhou

1995

Amplification of 26-fs, 2-TW pulses near the gain-naroowing limit in Ti:Sapphire, J. Zhou,, C.-P. Huang, M. M. Murnane and H. C. Kapteyn, Opt. Lett. 20, 64 (1995).

Multi: 26 fs, 60 mJ, 10 Hz.

a

Zimmerman

1995

Design for a compact tunable Ti:Sapphire laser, C. Zimmermann, V. Vuletic, A. Hemmerich, L. Rici, and T. W. Hansch, Opt. Lett. 20, 297 (1995).

An oscillator with a mode spacing of 1.2 GHz.

 

 

 

 

 

 

4)    Characterization of short pulses (back to top)

 

 

 

 

 

Braun

1995

Characterization of short-pulse oscillators by means of a high-dynamic-range autocorrelation measurement, A. Braun, et. al, Opt. Lett. 20, 1889 (1995).

8 orders of magnitude. Crucial information for work with plasmas.

 

Chilla

1991

Direct determination of the amplitude and the phase of femtosecond light pulses, Juan Chilla and Oscar Martinez, Opt. Lett. 16, 39 (1991).

First solution of short pulse measurement problem. Precursor to SPIDER.

 

DeLong

1994

Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries, K. W. DeLong, Rick Trebino, and Daniel Kane, J. Opt. Soc. Am. B 11, 1595 (1994).

Very useful reading, even if you’re only using one of the geometries.

f

DeLong

1994
A

Frequency-resolved optical gating with the use of second-harmonic generation, K. W. DeLong, Rick Trebino, J. Hunter, W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).

SHG is probably the most common choice of nonlinearity for FROG

 

DeLong

1996

Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating, Kenneth DuLong, David Fittinghoff, and Rick Trebino, IEEE J. Quant. Elect. 32, 1253 (1996).

 

f

Fittinghoff

1996

Measurement of the intensity and phase of ultraweak, ultrashort laser pulses, David Fittinghoff, et. al, Opt. Lett.  21, 884 (1996).

TADPOLE. Down to the single photon limit.

f

Iaconis

1999

Self-referencing spectral interferometry for measuring ultrashort optical pulses, Chris Iaconis and Ian Walmsley, IEEE J. Quant. Elect. 35, 501 (1999).

SPIDER

 

Kane

1993

Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating, Daniel Kane and Rick Trebino, Opt. Lett. 18, 823 (1993).

Introduction of FROG.

f

Kane

1997

Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single short, Daniel Kane, G. Rodriguez, A. J. Taylor, and Tracy Clement, J. Opt. Soc. Am. B 14, 935 (1997).

TREEFROG.

f

Kane

1999

Recent progress toward real-time measurement of ultrashort laser pulses, Daniel Kane, IEEE J. Quant. Elect. 35, 421 (1999).

New, fast inversion algorithm for FROG.

f

Paye

1992

The chronocyclic representation of ultrashort light pulses, Jerome Pay, IEEE J. Quant. Elect. 28, 2262 (1992).

Fancy word for Wigner distribution. Useful way to represent laser pulses related to FROG images.

 

Rhee

1996

Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique, J. Opt. Soc. Am. B 13, 1780 (1996).

Introduction of STRUT.

 

Trebino

1993

Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating, Rick Trebino and Daniel J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).

Detailed description of FROG vanilla inversion algorithm.

f

Trebino

1996

The musical score, the failure of the fundamental theorem of algebra in two dimensions, and the measurement of ultrashort laser pulses, R. Trebino, et. al, Laser Phys. 6, 252 (1996).

Good discussion of the uniqueness of the FROG spectrogram.

f

Trebino

1997

Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Rick Trebino, et. al, Rev. Sci. Instrum. 68, 3277 (1997).

 

f

Walmsley

1996

Characterization of the electric field of ultrashort optical pulses, Ian Walmsley and Victor Wong, J. Opt. Soc. Am. B 13, 2453 (1996).

Establishes general conditions for pulse field measurement.

 

 

 

 

 

 

5)    Experimentation (back to top)

 

 

 

 

 

Broers

1993

Time-resolved dynamics of electronic wave-packets above the classical field-ionization threshold, B. Broers, J. F. Christian, J. H. Hoogenraad, W. J. van der Zande, H. B. van Linden van den Heuvell, and L. D. Noordam, Phys. Rev. Lett. 71, 344 (1993).

 

 

Dunn

1993

Experimental determination of the dynamics of a molecular nuclear wave packet via the spectra of spontaneous emission, Thomas J. Dunn, John N. Sweetser, and Ian A. Walmsley, Phys. Rev. Lett. 70, 3388 (1993).

 

 

Dunn

1995

Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography, T. J. Dunn and I. A. Walmsley, Phys. Rev. Lett. 74, 884 (1995).

 

 

Jones

1993

Ramsey interference in strongly driven Rydberg systems, R. R. Jones, C. S. Raman, D. W. Schumacher, and P. H. Bucksbaum, Phys. Rev. Lett. 71, 2575 (1993).

 

 

Jones

1995

Bound-state interferometry using incoherent light, R. R. Jones, D. W. Schumacher, T. F. Gallagher and P. H. Bucksbaum, J. Phys. B 28, L405 (1995).

 

 

Nauenberg

1990

Autocorrelation function and quantum recurrence of wavepackets, Michael Nauenberg, J. Phys. B 23, L385 (1990).

 

 

Rundquist

1998

Phase-Matched Generation of Coherent Soft X-rays, Andy Rundquist, Charles G. Durfee III, Zenghu Chang, Catherine Herne, Sterling Backus, Margaret M. Murnane, Henry C. Kapteyn, Science 280, 1412 (1998).

 

 

Schumacher

1997

Wave packets in perturbed Rydberg states, D. W. Schmacher, B. J. Lyons, and T. F. Gallagher, Phys. Rev. Lett. 78, 4359 (1997).

 

 

Yeazell

1988

Observation of spatially localized atomic electron wave packets, John A. Yeazell and C. R. Stroud, Jr., Phys. Rev. Lett. 60, 1494 (1988).

 

 

Yeazell

1990

Observation of the collapse and revival of a Rydberg electronic wavepacket, John A. Yeazell, Mark Mallalieu, and C. R. Stroud, Jr., Phys. Rev. Lett. 64, 2007 (1990).

 

 

 

 

 

 

 

6)    Some Topic In Ultrafast (back to top)

 

 

 

 

 

Brabec

2000

Intense few-cycle laser fields: Frontiers of nonlinear optics, Thomas Brabec and Ferenc Krausz, Rev. Mod. Phys. 72, 545 (2000).

 

 

Cerullo

2000

Few-optical-cycle laser pulses: from high peak power to frequency tenability, G. Cerullo, et. al, IEEE J. Sel. Top. Quant. Elect. 6, 948 (2000).

Use of a hollow core fiber or OPA to increase bandwidth, and pulse compression issues.

 

Holzwarth

2000

Optical frequency synthesizer for precision spectroscopy, R. Holzwarth, Th. Udem, T.W. Hansch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, Phys. Rev. Lett. 85, 2264 (2000).

Ultrafast meets ultraprecise.

 

Paul

2001

Observation of a Train of Attosecond Pulses from High Harmonic Generation, P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, Science 292, 1689 (2001). 

as pulse train via high harmonic generation

 

Sokolov

2000

Raman Generation by Phased and Antiphased Molecular States, A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 85,

562 (2000).

as pulse train via Raman generation

 

Udem

2001

Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser, Th. Udem, S.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, and L. Hollberg, Phys. Rev. Lett. 86, 4996 (2001).

Ultrafast meets ultraprecise.

 

Young

2010

Femtosecond electronic response of atoms to ultra-intense X-rays, L. Young, E. P. Kanter, B. Krassig, Y. Li, A. M. March, S. T. Pratt, R. Santra1, S. H. Southworth, N. Rohringer, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt and M. Messerschmidt, Nature 466, 56 (2010).

First LCLS.

 

 

 

 

 

 

 

 

 

 

 

Selected references from the above list
organized by topic and sorted chronologically.

KLM and the development of ultrashort seed pulses (back to top)

 

 

 

 

 

Spence

1991

60-fs pulse generation from a self-mode-locked Ti:sapphire laser, D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).

First instance of KLM.

k

Asaki

1993

Generation of 11-fs pulses from a self-mode-locked Ti:Sapphire laser, Melanie Asaki, et. al, Opt. Lett. 18, 977 (1993).

 

k

Zhou

1994

Pulse evolution in a broad-bandwidth Ti:Sapphire laser, Jianping Zhou, et. al, Opt. Lett. 19, 1149 (1994).

Suggests 10 fs pulses limited by 4th order dispersion.

k

Zhou

1995

Space-time focusing of femtosecond pulses in a Ti:sapphire laser, Opt. Lett. 20, 309 (1995).

Pulse evolution in an oscillator.

k

 

 

 

 

 

Amplifier development using Ti:Sapphire (back to top)

 

 

 

 

 

Kmetec

1991

0.5-TW, 125-fs Ti:sapphire laser, J. D. Kmetec, J. J. Macklin, and J. F. Young, Opt. Lett. 16, 1001 (1991).

Regen/multi: 125 fs, 60 mJ, 0.6 Hz.

a

Squire

1991

100-fs pulse generation and amplification in Ti:Al2O3, Jeff Squire, Francois Salin, Gerard Mourou, and Donald Harter, Opt. Lett. 16, 324 (1991).

Perhaps the first ultrafast, high-power Ti:Sapphire system. Regen: 100 fs, 1 mJ, 20 Hz.

a

Sullivan

1991

Multiterawatt, 100-fs laser, A. Sullivan, et. al, Opt. Lett. 16, 1406 (1991).

Multi : 95 fs, 450 mJ, 5 Hz.

a

Rudd

1993

Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier, J. V. Rudd, et. al, Opt. Lett. 18, 2044 (1993).

One of the first kHz Ti:Sapphire systems. Regen: 40 fs, 0.7 mJ, 1 kHz.

a

White

1993

Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems, W. E. White, F. G. Patterson, R. L. Combs, D. F. Price and R. L. Shepperd, Opt. Lett. 18, 1343 (1993).

 

a

Zhou

1993

Generation of 21-fs  millijoule-energy pulses by use of Ti:sapphire, J. Zhou, et. al, Opt. Lett. 19, 126 (1993).

Multi: 21 fs, 0.5 mJ, 10 Hz.

a

Barty

1994

Multiterawatt 30-fs Ti:Sapphire laser system, C. P. J. Barty, C. L. Gordon III and B. E> Lemoff, Opt. Lett. 19, 1442 (1994).

Regen/multi: 30 fs, 125 mJ, 10 Hz.

a

Backus

1995

Ti:Sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz, Opt. Lett. 20, 2000 (1995).

Multi: 21 fs, 1 mJ, 1 kHz.

a

Barty

1995

Regenerative pulse shaping and amplification of ultrabroadband optical pulses, C. P. J. Barty, et. al, Opt. Lett. 21, 219 (1996).

Regen: 10 fs, 5 mJ, 50 Hz.

a

Zhou

1995

Amplification of 26-fs, 2-TW pulses near the gain-naroowing limit in Ti:Sapphire, J. Zhou,, C.-P. Huang, M. M. Murnane and H. C. Kapteyn, Opt. Lett. 20, 64 (1995).

Multi: 26 fs, 60 mJ, 10 Hz.

a

Barty

1996

Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification, C. P. J. Barty,  et. al, Opt. Lett. 21, 668 (1996).

Regen/multi: 18 fs, 80 mJ, 50 Hz.

a

 

 

 

 

 

FROG (back to top)

 

 

 

 

 

Kane

1993

Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating, Daniel Kane and Rick Trebino, Opt. Lett. 18, 823 (1993).

Introduction of FROG.

f

Trebino

1993

Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating, Rick Trebino and Daniel J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).

Detailed description of FROG vanilla inversion algorithm.

f

DeLong

1994

Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries, K. W. DeLong, Rick Trebino, and Daniel Kane, J. Opt. Soc. Am. B 11, 1595 (1994).

Very useful reading, even if you’re only using one of the geometries.

f

DeLong

1996

Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating, Kenneth DuLong, David Fittinghoff, and Rick Trebino, IEEE J. Quant. Elect. 32, 1253 (1996).

 

f

Fittinghoff

1996

Measurement of the intensity and phase of ultraweak, ultrashort laser pulses, David Fittinghoff, et. al, Opt. Lett.  21, 884 (1996).

TADPOLE. Down to the single photon limit.

f

Trebino

1996

The musical score, the failure of the fundamental theorem of algebra in two dimensions, and the measurement of ultrashort laser pulses, R. Trebino, et. al, Laser Phys. 6, 252 (1996).

Good discussion of the uniqueness of the FROG spectrogram.

f

Kane

1997

Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single short, Daniel Kane, G. Rodriguez, A. J. Taylor, and Tracy Clement, J. Opt. Soc. Am. B 14, 935 (1997).

TREEFROG.

f

Trebino

1997

Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Rick Trebino, et. al, Rev. Sci. Instrum. 68, 3277 (1997).

 

f

Kane

1999

Recent progress toward real-time measurement of ultrashort laser pulses, Daniel Kane, IEEE J. Quant. Elect. 35, 421 (1999).

New, fast inversion algorithm for FROG.

f