Problems marked with a (*) were taken from an unpublished chapter by Kip Thorne:
http://www.pma.caltech.edu/Courses/ph136/yr2004/book03/chap08/0208.1.pdf.
All the formalism needed has been covered in lecture, however.
(1*) An FM radio station has a carrier frequency of 91.3 MHz and transmits heavy metal rock music. Estimate the coherence length of the radiation.
(2*) How closely separated must a pair of Young's slits be to see strong fringes from the sun (angular diameter $\sim 0.5^{\circ}$) at visual wavelengths? Suppose this condition is just satisfied and the slits are $10 \mu \mathrm{~m}$ in width. Roughly how many fringes would you expect to see?
(3*) A circularly symmetric source of light has an intensity given by $I(r)=I_{0} \exp \left(-r^{2} / r_{0}{ }^{2}\right)$ where r is measured from the beam axis. What is the lateral coherence length?
(4) Show that the field treated in the notes on p22 (a sum of a large number of randomly phased plane waves) has $g^{(2)}(\tau)=2$. (Loudon 3.7)
(5) Consider the light beam formed by superposition of two independent stationary beams, labeled a and b, with a total cycle averaged intensity $\mathrm{I}(\mathrm{t})=\mathrm{I}_{\mathrm{a}}(\mathrm{t})+\mathrm{I}_{\mathrm{b}}(\mathrm{t})$. (Think of the two beams following the same path after being combined using a beamsplitter.) Show that the overall degree of second-order coherence is:

$$
g^{(2)}(\tau)=\frac{I_{a}^{2} g_{a}^{(2)}(\tau)+2 I_{a} I_{b}+I_{b}^{2} g_{b}^{(2)}(\tau)}{\left(I_{a}+I_{b}\right)^{2}}
$$

Here, $g_{a}^{(2)}$ and $g_{b}^{(2)}$ are the second order coherences for each beam alone.

