(1) pinhole camera

In the following you may wish to refer to Figure 4.24. Let the distance between the object plane and pinhole plane be s_{o} and the distance between the pinhole plane and observing screen be s_{i}. Let the diameter of the pinhole be a. Assume paraxial conditions. Except for part (a), work with an object point that is on axis.
(a) What is the magnification, m ? Follow standard sign conventions.
(b) Neglecting diffraction and using ray optics only, the object point is "imaged" onto an illuminated circle of what diameter d ?
(c) According to ray optics alone, choosing a small pinhole diameter will yield a smaller d , improving image quality at the cost of less light reaching the screen and a longer exposure time. However, if a is small enough, diffraction effects will produce a diffraction pattern as big as the diameter d , greatly reducing image quality.

The first minimum in the diffraction pattern from a round pinhole is approximately given by: $a \sin \theta=1.22 \lambda$. Here θ is the angle of the line extending from the center of the pinhole to the diffraction minimum. Let's guess that a reasonable way to include the effect of diffraction is to define the actual diameter of the illuminated circle on the screen as: $D=d+2 w$, where w is the distance from the center of the circle to the diffraction minimum. Find the pinhole diameter that gives you the smallest D .
(d) For 550 nm light, an object distance of 10 m and a magnification of $-1 / 100$, what is the minimum D possible?
(2) text 4.44
(3) text 4.45
(4) text 5.4
(5) text 5.5
(6) test 5.6

