Douglass Schumacher

I study extreme light-matter interactions using ultraintense, ultrashort pulse lasers and supercomputing. Most of this work is done locally in collaboration with my colleagues in the OSU High Energy Density Physics Group using our 400 TW laser, Scarlet, and the Ohio Supercomputer Center. I also use facilities around the country and in Europe.


Contact information
614-292-7035 (phone)
614-292-7557 (fax)
4180 Physics Research Building
Mailing address
The Ohio State University
191 West Woodruff Ave
Columbus, OH 43210
Modern Optics
Quantum Optics
Ultrafast Optics
Intro to Lasers
High Energy Density Physics Physics 1250
Physics 1260
Physics 1261
Physics 131
Physics 132
Physics 133

Class resources
Virtual Demos
Member of
OSU Department Of Physics

The American Physical Society
The Optical Society of America

Funding and Supercomputer time:


I study the interaction of intense light with matter. For the lowest intensities I explore, this is the domain of nonlinear optics including such spectacular phenomena as white light continuum generation and filamentation. At somewhat higher intensities this becomes laser damage, known in other contexts as laser surgery or laser machining. At the highest intensities this is the domain of relativistic laser plasma physics. In this regime electrons are accelerated close to the speed of light in a fraction of an optical cycle, lasers becomes sources of x-rays, gamma rays, electron and ion beams, antimatter, and unusal states of matter that can only be found naturally in the cores of planets or the interiors of stars.

Below is a picture of the Scarlet laser bay and one of an early set of liquid crystal films. The films are different thicknesses giving rise to different colors from thin film interference. We use these films as novel targets and optics.

My Group

Ginevra Cochran Grad Anthony Zingale Grad
Jeremy Karst Undergrad Jordan Purcell Undergrad
Alex Russell Grad Joseph Snyder Post-doc

Recent Graduates

Randall Hanna BS Matthew McMahon Ph.D
Robert Mitchell Ph.D Patrick Poole Ph.D
Kevin Pytel MS Frank King Ph.D
Kasandara Sullivan MS Kevin George Ph.D
Joseph Snyder Ph.D


Camelia Vasilescu Grad
Jennifer Tate Grad
Kenn Bates Grad
Becky Weber Undergrad
David Sproles  Undergrad
Andrew Parkes

Corey Casto 

Owen Marshal Undergrad
John Stankiewicz Undergrad
Tracy Moore REU 
Jumpei Masae Grad
Michael Ackerman REU
Jenn Holt Undergrad
Jason Neiser REU
Elaine Savageau Undergrad

Recent Publications

I'm changing my (primitive) web page. Until then, a full list is given in my CV.

"Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films," P. L. Poole, C. Willis, G. E. Cochran, R. T. Hanna, C. D. Andereck, and D. W. Schumacher, Applied Physics Letters 109, 151109 (2016). DOI: 10.1063/1.4964841.
"Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses," P. L. Poole, A. Krygier, G. E. Cochran, P. S. Foster, G. G. Scott, L. A. Wilson, J. Bailey, N. Bourgeois, C. Hernandez-Gomez, D. Neely, P. P. Rajeev, R. R. Freeman, and D. W. Schumacher, Scientific Reports 6, 32041 (2016). DOI:10.1038/srep32041.
"Experimental capabilities of 0.4 petawatt, 1 shot/min Scarlet laser facility for high energy density science," P. L. Poole, C. Willis, R. L. Daskalova, K. M. George, S. Feister, S. Jiang, J. Snyder, J. Marketon, D. W. Schumacher, K. U. Akli, L. Van Woerkom, R. R. Freeman, And E. A. Chowdhury, Applied Optics 55, 4713 (2016).
"Micro-engineering laser plasma interactions at relativistic intensities," S. Jiang, L. L. Ji, H. Audesirk, K. M. George, J. Snyder, A. Krygier, P. Poole, C. Willis, R. Daskalova, E. Chowdhury, N. S. Lewis, D. W. Schumacher, A. Pukhov, R. R. Freeman, and K. U. Akli, Physical Review Letters 116, 085002 (2016). DOI: 10.1103/PhysRevLett.116.085002.

Research (circa 2005)

I've kept this section for nostalgia from an old web page. Following are just some pictures from my first lab located in Smith Lab.

The main laser system in my lab was based on Ti:Sapphire and produced 60 fs pulses with 1 mJ/pulse at a 1 kHz repetition rate. The pulses could be shaped using a LCD based pulse shaper. Below are two pictures of the laser system. It occupied a single 10' x 4' table. We also had numerous dye lasers for atomic excitation.

Here is what continuum generation looks like. Shown below is the result of sending our laser pulses through 1 mm of pure sapphire at a pulse energy around 2 uJ. The pulse energy increases slightly from left to right.

Here is continuum generation from a microstructure fiber using 1 nJ pump pulses (but lots of them).