Derivation of Compound Trebuche Equations of Motion

(Requires a College Sophomore Mechanics Course)

The mass m_1 has been used to model the moment of inertia of the arm and turning shaft. Any potential energy of the arm has been ignored. The taut sling r_2 tethers the throwing mass m_2. The dropped weight is of course has mass M.

In Cartesian coordinate the position of m_1 and m_2 are given by the expressions:

$$x_1 = r_1 \sin(\theta_1) \quad \text{and} \quad x_1 = r_1 \sin(\theta_1) + r_2 \sin(\theta_2)$$

$$y_1 = r_1 \cos(\theta_1) \quad \text{and} \quad y_1 = r_1 \cos(\theta_1) + r_2 \cos(\theta_2)$$

One can then calculate the Kinetic Energy (K) and the Potential Energy (U) of the system.

$$K = \frac{1}{2} m_1 r_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 (r_1^2 \dot{\theta}_1^2 + r_2^2 \dot{\theta}_2^2 + 2r_1 r_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2)) + \frac{1}{2} MR^2 \dot{\theta}_1^2$$

$$U = -Mgh \theta_1 + m_2 g (r_1 \sin(\theta_1) + r_2 \sin(\theta_2))$$

The Lagrangian is given by $L = K - U$, and the equations of motion can be found by variational techniques using the Euler-Lagrange equations.

$$\frac{\partial L}{\partial \theta_1} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_1} \right) = 0 \quad \text{and} \quad \frac{\partial L}{\partial \theta_2} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_2} \right) = 0$$

The resulting equations of motion respectively are:

$$Mgh - m_2 gr_1 \cos(\theta_1) - m_2 r_2 \dot{\theta}_2 r_2 \sin(\theta_1 - \theta_2) - m_2 r_1 \dot{\theta}_1 - m_2 r_1 \dot{\theta}_1 - MR^2 \dot{\theta}_1 - m_2 r_1 r_2 \dot{\theta}_2 \cos(\theta_1 - \theta_2) = 0$$

and

$$-m_2 gr_2 \cos(\theta_2) + m_2 r_2 \ddot{\theta}_1 r_2 \sin(\theta_1 - \theta_2) - m_2 r_2 \dot{\theta}_2 - m_2 r_2 \dot{\theta}_2 - m_2 r_2 \dot{\theta}_2 - m_2 r_2 \dot{\theta}_2 \cos(\theta_1 - \theta_2) = 0$$
These coupled differential equations are very difficult if not impossible to solve in closed form. These are solved numerically with a computer by setting initial conditions.

\[\theta_1 = -\frac{\pi}{2}, \theta_2 = -\frac{\pi}{2}, \dot{\theta}_1 = \dot{\theta}_2 = 0 \quad \text{at } t=0 \text{ seconds.} \]

One is the left with two equations in two unknowns \(\theta_1 \) and \(\theta_2 \). Solving for \(\dot{\theta}_1 \) and \(\dot{\theta}_2 \) these are plugged back into the equations.

\[
\begin{align*}
 t' &= t + \Delta t \\
 \theta_1' &= \theta_1 + \dot{\theta}_1 \Delta t \\
 \theta_2' &= \theta_2 + \dot{\theta}_2 \Delta t \\
 \dot{\theta}_1' &= \dot{\theta}_1 + \ddot{\theta}_1 \Delta t \\
 \dot{\theta}_2' &= \dot{\theta}_2 + \ddot{\theta}_2 \Delta t
\end{align*}
\]

and the process is repeated iteratively.