Set all Banks to 3.3 V I/O

Depend Clocks: elckB, slck

Verilog Module Syntax notes:

Command line options: -bufg 0 -iof false -iobuf

PROGRAM takes < 55 ms (28ms this FPGA):

PART=XC2V500-5-FG456

VME Broadcast Addresses:
- 24 = OSU-TCB "Test Control Board"
- 25 = DMB
- 26 = TMB
- 27 = Both DMB and TMB
- 28 = DDU
- 22 = DCC

Reset-to-DDU Ready time:
- Sync: < 600 ms
- Soft: < 20 ms
- Hard: < 62 ms

DDUctrl-PROGRAM < 27.6 ms
- DDUctrl-PROGRAM < 30.1 ms
- Nctrl-PROGRAM < 51.8 ms

DDU Format Since DDUctrl v15:

v1: Begin vme5ctrl from vme4ctrl v5, new DDU5 pinout
v3-8: All PROM JTAG lines now have 3-state drivers, fixed UCF FMM pins
v9-10: Add VME Serial ADC control (Device 8...13 in r2), debug on LEDmode14; tune DLLs
v11-13: Modify FMM LEDs, add 3 IRQ pins, add VME Registers for GbE/SLINK_WAIT, Fake_L1A_Enable & DDU production testing
v14: Add Restore-Idle after SoftReset, add Busy/Warn history on VMEparDev5/6, tune RealFMM logic
v14r2-4: Tune Busy/Warn history

v15: Tune ToVME and AS timing, also VMEpar_Info Reg; sets IRQ1 on Error; add debug LEDmode12

v16: Tune 12-bit SADC, add verilog-Cascade bit_counter for CSC Sync/Err flags for IRQs
v17: Remove SyncRst where not needed

v18: switch DDUfpga JTAG from SlwClk2 to SCLK, @INIT --> INIT for ROMs, tune BUSY/Sync priority
r2: add one SCLK delay to VME_PEN & VME_SEN, r3-8: test Broadcast
v18r9: ok, no Bcast. v19r1-2: Bcast tests. v19r3: Fixed Broadcast

Mode 1 Switch Block, LED0 in rear:
- 1: Mode Bit 0
- 2: Mode Bit 1 IRQ Response delay, Shuttle PC
- 3: Mode Bit 2 to end of first DTACK: 80-120 usec
- 4: Mode Bit 3 to end of second DTACK: 350-1150 usec
- 5: Mode Bit 4 00 for Standard Debug, 01 for VME-Serial
- 6: Mode Bit 5 10 for Flash RAM, 11 for VME-Parallel
- 7: Disable Auto Serial Load

Set all LA bits HIGH ~FPGA version on LEDs

RST_1=Soft_Reset for FPGAs and ALL FIFOs

To Do:
- Check DBR: throw Autoled
- Put GMR Pend into Flash BUS
- No logic for VMECtrl, VMEpar...

Replace EmptyIN/FIFO_EMPTY PUs?

DDU WordCount (64-bit words) for "No Data" event: 0x006.

DDU WordCount for one DMB (only one CFEB): 0x19A = 410 dec.

DDU WC. 1 DMB with 2 CFEB: 0x32A = 810 dec.

DDU WC. 2 DMB with 1 CFEB (nCFEB=2): 0x32E = 814 dec.

DDU WC. 2 DMB with 2 CFEB (nCFEB=4): 0x64E = 1614 dec.

Ethernet ByteCount = 8*DDU WordCount (16 TS assumed)

Default Startup Order:

- Release DLL (no wait)
- 4) DONE
- 5) En. Outputs
- 6) Release WE
SCLK: 10MHz = MIDCLK (max serial speed for FIFOs)
SLOWCLK: 2.5MHz (used for Serial ADC)
SLOWCLK2: 1.25MHz

CLK is in phase with MidClk, but they are not in phase with SlowClk

JTAG "Device" List
1: Output FIFO
dvc7
2: VME_Ctrl Prom
dvc1
3: DDU Ctl Prom 1 & 0
dvc6
4: InCtrl Prom 1 & 0
dvc4
5: DDU_Ctl FPGA
dvc8
6: InCtrl FPGA 0
dvc2
7: InCtrl FPGA 1
dvc3
8: SLINK JTAG
dvc5
9: VME Parallel (...not JTAG...)
N/A
10: VME Serial (...not JTAG...)
N/A
13: Serial ADC (...not JTAG...)
N/A
15: Emergency Load for VME_Ctrl Prom
N/A
The normal JTAG command can work at 10MHz, but for In_System_Programming, it must be slow, such as 1.25MHz. The ISP does not work at 2.5MHz or faster.

Free LED Modes
LA0 free: 13 LA1 free: 12,13
LEDs Free: 13
TP 2-4 Used: 0,1
8-bit Opcode: Read Flash SRAM Status

Send Opcode MSb first, Read Data LSb first
VME, No Serial Dev

Check for These bits[7:0] in SRAM Status: Rdy, Comp, 0, 0, 1, 1, x, x

32-bit Opcodes: Program Flash SRAM Pages 1,4,5,7

Send Opcode MSb first, Read Data LSb first
VME, No Serial Dev

Check for These bits[7:0] in SRAM Status: Rdy, Comp, 0, 0, 1, 1, x, x

64-bit Opcodes: Readout Flash SRAM Pages 1,4,5,7

Send Opcode MSb first, Read Data LSb first
Auto, After MRST

Check for These bits[7:0] in SRAM Status: Rdy, Comp, 0, 0, 1, 1, x, x

Note 4-bit VME command (VMEadr[5:2])
Serial ADC (12-bit, MAX1270/1271) Interface clock: 1.25MHz (Divided SLOWCLOCK) is used. The ADC1270/1271 can work at a frequency from 0.1MHz to 2.0MHz.

REAL FMM 4-bit decode definitions:

- 0001: Warning/NearFULL (Grn ON, Yel BLINK)
- 0010: Lost Sync, need SyncReset (both BLINK)
- 0100: Ready {DDU Ready === !Busy} (Grn ON)
- 1100: Error, need HardReset (Yel BLINK)

Serial ADCs & FMM LED Logic
DDU VME Controller Logic
CMS CSC Electronics
Parallel Register Readout

Count how many CSC Reset bits are set:

Dev<8: Read Only, no CMD req'd. Dev>=8 needs CMD, CMD>=128 is Write

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

VME Communication Interface
DDU VME Controller Logic
CMS CSC Electronics

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

VME Communication Interface
DDU VME Controller Logic
CMS CSC Electronics
Required for Test firmware:

CMD15 = "FMM Test Reg" FD16CE

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

must set "FOE" FMM Override Enable

Dev9, CMD 0F/8Fh (R/W)
bits15-4: "FOEh"
bits3-0: FMM Bit state to Force

Special VME Parallel Dev 9 CMD 0,5,6

Dev9, CMD 00/80h (R/W)
bits2-0: GbE Prescale
bit3: Slink Wait Enable

Required for Test firmware:

Read Only, VME Par Dev 8:
writes with InReg0

Could be temporary

Dev9, CMD 05/85h (R/W)
bits2-0: Enable Fake L1A/Data Passthrough for each DDU FPGA
bit3: Not Used

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

VME Communication Interface
DDU VME Controller Logic
CMS CSC Electronics

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

VME Communication Interface
DDU VME Controller Logic
CMS CSC Electronics
DDU VME Controller Logic JRG

THE OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

TITLE: VME Communication Interface
DDU VME Controller Logic
CMS CSC Electronics

DATE: 12-23-2005 10:50
PAGE: 2N

VME_DEV[15:0] = LA0[15:0]
VME_VMEACC[15:0] = BUFE16

DDU_SYNC[15:0] = LA0[15:0]
VME_DLL_ERR = BUFE4

DDU_BUSY[15:0] = LA0[15:0]
VME_VMEACC[15:0] = BUFE16

DDU_WARN[15:0] = LA0[15:0]
VME_VMEACC[15:0] = BUFE16

DDU.ERR[15:0] = BUFE16

INV = BUFE4

LED0 = BUFE16

LED2 = BUFE16

LED4 = BUFE16

LED6 = BUFE16

LED_OPT = BUFE16

LED7 = BUFE16

LED0 = BUFE4

LED2 = BUFE4

LED4 = BUFE4

LED6 = BUFE4

LED7 = BUFE4

INV = BUFE4

Device: ADR[15:12] sets device ID

COMMAND[9:0] ADR[7:2]=JTAG command

00 Read only Status Register[8-bit data]
01 Read Input Register0[16-bit data]
02 Read Input Register0-2[16-bit data]
03 Read Input Register0-2[16-bit data]
04 Read Input Register0-2[16-bit data]
05 Read Input Register0-2[16-bit data]
06 Read Input Register0-2[16-bit data]
07 Read Input Register0-2[16-bit data]

08 Input FIFOs 0-3

09 Serial ADC

VME-Serial Device code: "iadr" in scan.c

04 Flash SRAM (RdsStat or Program Page), NEEDS COMMAND

--> command required with device 4:

0x 00: Read Status Register[8-bit data]
0x 09: Program page 1 (Kill Ch.) [16-bit data]
0x xx: Program page 4 (DDR offsets) [32-bit data]
0x xx: Program page 5 (GBE offsets) [32-bit data]
0x 0D: Program page 7 (Board ID) [16-bit data]

0C Load GBE Output FIFO (SEN=LD, set HI during MRST)

0D Load DDU_Ctl FPGA (Kill Ch.)--N/A

0E Load DDU_Ctl FPGA (Board ID)--N/A

0F Load DDU_Ctl FPGA (Kill Ch.)--N/A

09 Emergency PROM Programming via VME

0A User Code 11111110 1111001001

0B User2 03C2h=1111000010

0C User1 03C3h=1111000011

0D Device Bypass

0E User Code 11111111 1111100000

0F User Code 11111110 1111001001

For bigger V2P's add 1's to the left

The OHIO STATE UNIVERSITY
PHYSICS DEPARTMENT ELECTRONICS LAB
174 WEST 18TH AVE, COLUMBUS OH 43210

VME-Read Command Decoder
DDU VME Controller Logic
CMS CSC Electronics
^added 3 clocks for Broadcast case^^^
^^^added 3 clocks for Broadcast^^^
CFEB JTAG commands:
00 || Shift data, no header, no tailer
01 || Shift data with header only
02 || Shift data with tailer only
03 || Shift data with header and tailer
04 ||
05 || Read TDO register
06 || Reset JTAG State machine
07 || Shift Instruction register with header and tailer
0C || Shift IR, no header, no tailer
0D || Shift IR with header only
0E || Shift IR with tailer only
0F || Shift Instruction register with header and tailer
DTACK for Load Instruction/Data Register command

was ~ADCENA1
Serial ADC Command Decoder:
00 || Write Control Byte to MAX1271's
01 || Read Data Back from 1271 Register
02 ||
04 ||
05 ||
06 ||

CFEB JTAG command decode

Serial ADC Command Decoder:
- 00 || Write Control Byte to MAX1271's
- 01 || Read Data Back from 1271 Register
- 02 ||
- 04 ||
- 05 ||
- 06 ||