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Problem 7.70

(c) For the integral in part (b) to yield the correct result, the value of ¢ would have to be
slightly more negative. By manual trial and error, I found that ¢ = —0.821 gives the
correct answer (to four significant figures). It’s easier, though, to have Mathematica
do the trial and error, using the FindRoot function:

FindRoot [2. 315==NIntegraﬁe [Sqrt[x]/(Exp[(x-c)/2]-1),
{x,0,Infinity}], {c,-.8,-.9}]

This instruction returned the value ¢ = —0.820792. (The values —.8 and —.9 tell
Mathematica where to begin the search.) Repeating this instruction for other values
of t is now a simple matter, although for smaller ¢ values, you get bad results unless
you specify better starting points such as —.1 and —.2. The following instruction
generates a table of all the desired c values:

muTable =
Table[{t,FindRoot [2.315==NIntegrate [Sqrt [x]/(Exp[(x-c)/t]-1),
{x,o,InfinitY}] » {C ,_-1,".2}] [[1,2]]}1 {t,1.2,3, -2}]

(The symbols [[1,2]] are needed to strip off the unwanted braces and “c—" inserted

by the FindRoot function.) To make the plots prettier, I added on the known value

at t = 1 with the instruction muTable = Prepend[muTable,{1,0}]. With or with-

out this addition, the instruction ListPlot[muTable] will then generate a plot of

the points calculated. But to get a smooth plot, I instead defined an “interpolating
" function” and plotted that: '

mulnterp = Interpolation(muTable];
Plot [muInterp(t],{t,1,3}]

Here is the plot:
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Problem 7.70. (Heat capacity of a Bose gas.)

(a) To compute the total energy, we add up the average energies in all single-particle
states, which means inserting an extra factor of € into equation 7.121 or 7.122:

€ . 1
U= Z elea—m/kT — 1 ]0 €g(e) e—m/kT _ 1 de

all s

3/2 o 3/2
= }_(?ﬂﬁ) T R el
VT \ h? o ele—m/kT 1
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(b) For T < T, we can set u = 0, then substitute z = ¢/kT and evaluate the integral:

3/2 =] 3/2 3/2
U= (B Ve [ e = 2 (ZRY v (kry2 1783,
o

NAWT =1 Jr\ h?
(I did the integral with Mathematica.) Differentiating with respect to T' gives the heat
capacity,
aU 2mm 32, 2rm\3 3/2
Cv = (1 783) \/.( i ) V(kT)*?k = (5. 031)( "y (kT) k.

Using equation 7.126 for the condensation temperature, this result can be rewritten

as
Cy _5031 (T __ (T)
Nk 2612\1,) ~— T \T./ °

This is a concave-up function of T', as shown in Figure 7.37. The overall constant
seems to agree as well, since the figure shows that Cy /Nk is just less than 2 when
T=T:

(c) In the high-temperature limit, this system should behave as an ordinary monatomic
ideal gas, with three degrees of freedom per atom. So by the equipartition theorem,
its heat capacity should be 3Nk.

(d) Going back to the original integral in part (a), let’s change to dimensionless variables
as in Problem 7.69(a):

3/2

_ 2 (2mm 3/2 8/2 o n3/2
i \_/_;r-( h? ) V() j; elz—e)/t — = (0. 432)NkT/ elz— c)/t_ ldz

where I've again used the definition of T, equation 7.126. To compute U/NkT I
defined the following Mathematica function:

uft_] := .432%NIntegrate([x~1.5/(Exp[(x-muInterp[t])/t]l-1),{x,0, Infinity}]

Here muInterp[t] is the interpolating function for ¢ = u/kT defined in the Problem
7.69(c). In principle, it's now easy to differentiate this function to obtain the heat
capacity. In practice, though, the numerical differentiation tends to be awkward and
can compound the numerical inaccuracies that are present in the function mulnterp.
Here’s a sequence of instructions that produces reasonably good results:

Utable = Table[{t,u[t]},{t,1.2,3,.2}]

Utable = Prepend[Utable,{1,.7703}]

Uinterp = Interpolation[Utable]

heatcap[t_] := (Uinterp[t+.01]-Uinterp[t-.01])/.02
Plot [heatcap[t],{t,1.01,2.99},PlotRange->{1.5,2}]

By generating a table of energy values at only the p values that were calculated
explicitly, I’ve avoided the inaccuracies in the interpolating function for . I then
added to the table the energy at t = 1, which is easy to calculate by setting ¢ = 0.
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Next, I defined a new interpolating function to compute the energy at intermediate
values, and defined a heat capacity function which differentiates this energy function
numerically. Since the energy function really computes U/NkT,, differentiating with

respect to t = T'/T. actually gives Cy/Nk. Here’s the plot produced by the final
instruction:

1.6

43 1.5 2 2.5 3t=T/T

The only significant differences between this plot and Figure 7.37 are the scale of the
axes and the fact that 7.37 also shows the behavior for T' < T.. However, to produce

Figure 7.37, I computed the “exact” values of u and U at intervals of 0.1(T'/T.), for
increased accuracy.

Problem 7.71. When you know the heat capacity all the way down to T' = 0, you can

calculate the entropy of a system from equation 3.21. In our case, using the result of
Problem 7.70(b),

. R (1.926)Nk [T . (1.926)Nk 2
ol =N D ol /2 = ATOEL)ITN | A3l
S(Ty) = | rdT = T /D TVT = g - 3T}

In other words, for any T below T,

T\¥?
S =1284{ — k.
(T) A

c

Note also from Problem 7.70(b) that the energy (for T < T.) can be written

3/2 3/2
_-_%%(%) NkT_—-_(o.m)(-IT,—) NKT.

The Helmholtz free energy is therefore

T\¥/?
F=U-TS=—(0.514) (T) NEKT.

To compute the pressure, we need to write this expression in terms of V, T, and N. Note
from equation 7.126 that

T-3/2 = (2.612)K(

4 2mmk )3/2,

h2
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so we have
" V ¢ 2nmkT \3/2 V r2rmkT\3/2
F= (0.514)(2.612)N(T-) NkT = (1.343)-A7(—h2—) NKT,

which implies

OF 2mmkT \3/2
P= _(W)N.T - (1.343)( = ) kT

Indeed, this expression is independent of volume (and of N). Apparently, once we are below
the condensation temperature, reducing the volume (at fixed T') simply causes more atoms
to join the condensate, while the pressure is due entirely to the atoms that are in excited
states. (Notice from the preceding calculations that the energy and entropy, and hence the
free energy and pressure, are computed entirely as integrals over the excited-state energies,
completely neglecting the condensate.)

Problem 7.72. In a two-dimensional box with constant g, equation 7.122 becomes

* 1
N = g‘/o‘ e_-_-——(:—p)/kT 1 de.

Suppose, now, that there is a range of temperatures at which u is essentially equal to zero.
Then the integral becomes
e 1
£ W—_l dﬁ,

which diverges at its lower limit. (To see this, expand the exponential in a Taylor series
to obtain 1 + ¢/kT" + ---. Cancel the 1’s and you find that the integrand is proportional
to 1/e, which is not integrable.) In other words, if u were zero, we would have an infinite
number of particles in the low-lying excited states. With only a finite number of particles
to go around, the integral must remain finite and therefore p must be negative. This
implies that, at any T that’s high enough to allow converting the sum to an integral, the
population of the ground state won’t be much greater than the population of the low-lying
excited states (because p isn’t that much closer to the former than to the latter). At very
low temperatures, of course, all the particles will settle into the ground state, but this
doesn’t happen until kT' becomes comparable to the spacing between the low-lying energy
levels (when we can no longer approximate the sum as an integral). As the temperature
of this system is lowered, the particles just gradually move into lower-energy states in a
continuous way, with no abrupt transition. In order to get an abrupt transition, the integral
for N must converge at its lower limit when y = 0; this happens only when g(€) goes to
zero as € — 0.

Problem 7.73. (Bose-Einstein condensation in a harmonic trap.)

(a) For n >> 1, the degeneracy of level n is approximately n2/2. The spacing between
levels is hf, so the density of states, which is the number of states per unit energy,
would be n?/2hf = €2/2(hf)3.




—

(b)

Problem 7.74

To find the condensation temperature of this system, we just evaluate the integral
(7.122) for the total number of particles, using our new density-of-states function and
with p set equal to zero:

B 1 i = & 1(kT\ [©_2°
N—'/; g(e)efﬂ‘r—lde—2(hf)3_/g ee/kT._ldE_E(-h?)'[o e"‘—].dx‘

The integral is the same one evaluated in Problem 7.44(a); it is approximately equal
to 2.404. As in equation 7.125, this formula for N cannot possibly be true at more
than one temperature. That temperature (above which p becomes negative and below
which the extra particles settle into the ground state) is the condensation temperature:

_hf( N L
T‘"T(moz) ‘

The potential energy of the “spring” is %k,ag, where k, is the spring constant and a
is the displacement from the center of the well. Since the frequency of oscillation is
f = Vks/m/2m, we can write k, = (2mf)?m. At temperature T., the average particle
energy is of order kT and so the amplitude of oscillation can be found by setting the
spring potential energy equal to kTc:

1 o _ 1 [2kT. —1/3 [ kT,
2(21rf) ma? = kT, or ifi e \4 =,

where V is the volume contained within the oscillation amplitude and I've dropped
all small numerical factors in the last step. Using this expression to eliminate f in the
formula for T, we obtain (again neglecting small numerical factors)

by, [FLe s A
Tc~kV mN, oo (kT)=—+\7y) -

Canceling a factor of kT. now gives & formula identical to equation 7 .126, aside from
the numerical factors.

Problem 7.74. (BEC in a harmonic trap: exact numerical treatment.)

()

As stated in the previous problem, the degeneracy of level n is (n + 1)(n + 2)/2.
Therefore equation 7.121 becomes

& (pt+)(n+2) 1
I = ZO 2 ele—m/kT — 1’
where € = nhf. Substituting p = chf and T = thf, the exponent in the denominator
becomes simply (n — ¢)/t, s0

~ (n+1)(n+2) 1
N z 2 e(ﬂ—c)/t =1 ;

n=0
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(e) Using the same methods as in part (d), I found the c values listed in the table below.
At each temperature I've also listed the occupancy of the ground state. Occupancy
graphs for t = 13, 12, 11, and 10 are shown above.

t=kT/hf c=p/hf  No

15.0 —10.536 0.98
14.0 —7.3205 1.46
13.0 —4.3898 2.49
12.0 —1.8177 6.11
11.6 —0.9328 11.9
114 —-0.5471 20.3
11.2 —0.2478 44.7
11.0 —0.1038 105.5
10.0 —0.0187 534.4
9.0 —0.0099 907.6
8.0 —0.0066 1212

Down to a temperature of about 11.5, the behavior of this system is quite smooth and
predictable, with the energy distribution of the particles moving gradually downward
and the chemical potential moving gradually upward as ¢ decreases. But at around
t = 11.3, the chemical potential is close enough to zero that the population of the
ground state becomes significantly larger than that of any other state; the occupancy
plot acquires a “spike” at n = 0 which grows very rapidly as t is reduced further.
At t = 10, more than a quarter of the particles are in the ground state, despite the
fact that the rest of the particle distribution doesn’t look much different from before.
At t = 8, more than half of the particles are in the ground state. The condensation
temperature would be the temperature at which the population of the ground state
becomes a significant fraction of the total number of particles. For a system of only
2000 particles, this transition temperature is not precisely defined, but if I had to pick
a number, I'd put it at about ¢ = 11.3. For comparison, Problem 7.73(b) predicts

kT, 2000 \ /3

However, this formula was derived in the thermodynamic limit where NN is very large.
Although the transition temperature of our relatively small system is not precisely
defined, the abrupt change in behavior as t is reduced from 12 to 11 is still quite

dramatic, as you can see from the table and graphs.

Problem 7.75. (Corrections from quantum statistics to ideal gas behavior.)

(a) If we multiply and divide the Bose-Einstein distribution by e~ (c=#/kT  we get
a e—(e~w)/KT
fise(€) = T o=emiiT

where in the second expression I've applied the binomial expansion to the denominator.

In the high-temperature limit, the occupancies of all states should be much less than 1,
so the exponential factor e~(~*/*T should be much less than 1, which implies that

the expansion converges quickly.

= e (WIRT[] 4 g (=T 4 ],
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(b)

(c)

The total number of particles in all states must be N, so

[ <] = =]
e [ g(e)ﬁBE(c) de = go/ \/g [e-(e—p)/kT F9 e—‘:(c—u)fk'r] de,
0 0

where g is an abbreviation for the constants in equation 7.123, and I've truncated the
series after the second term. The first term is

o0 o0
goe“/krf Vee /¥ de = 2goe”/kT(kT)3/2f e dz = ggoe“/kT(kT)sn,
0 0

where I've changed variables to z = 1/€/kT to obtain the same integral as in equations
6.49 and B.8. Similarly, the second term is

goe2p/ka ‘/Ee—Ze/kT de = 2goe2p/kT(kT)3/2/ 2 8—232 de = \/1_1- gDeZp/kT(kT)am.
0 0 2v/8

Therefore,

_ VT T 3/2 1 unr| _ 2emkTN32 1 kr
N—-—Q—goe (kT) 1-1-%8 —( % ) Ve 1+\/§e

|4 1
= —eP/FT |1 4+ — n/kT
Ve [ * 7B ]’ @

where I've substituted the constants in equation 7.123 for go. Rearranging this equa-
tion gives
% )
e H/kT — [1 s _e#/kT] .
Nvq V3

If we ignore the second term in the brackets, we obtain the “classical” result p =
—kT'1n(V/Nwg). The second term gives the first quantum correction to this result,
which we assume to be small. Since it is already small, though, we can substitute the
classical value of u in this term to obtain

14 1 Nv Nv 1 Nv
—p/kT _ Q u/kT _ Q 5 Q
e = Nog [1+—\/§—V ], ar e A [1 ]

Solving for p then gives

,u=—kT1n[ Y g )] z—len( L4 ) kTNvq

14 " ,
N'UQ( V8V Nug V8V

where I've expanded the logarithm of 1+ Nvg/v/8V in the last expression. Note that
the first term is the familiar result for a classical ideal gas.

In Problem 5.23(c) we showed that & = — PV, while in Problem 7.7 we showed that

® = —kTlnZ. Combining these results gives P = (kT/V)InZ. For a system of

noninteracting particles in a box, we can treat each wave mode (or single-particle
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state) as an independent subsystem and factor the grand partition function as we did
for the ordinary partition function in equation 6.69:

Zioral = 212225+ = [ 2

where n labels the various wave modes. Taking the logarithm of both sides of this
equation gives
InZpw =InZ +mZ+Z+ =) InZ,.

(d) The sum over n is really a triple sum over n., ny, and n,. Converting this triple sum
into an integral in spherical coordinates over the positive octant of n-space, we obtain
7/2 for the angular integrals which leaves

nZ= E/ n? In Z, dn.
2 Jo
Meanwhile, using equation 7.24 for the grand partition function of a single mode,

1 —(e— kT
an"=ln(1—:m) =—ln(1—e (e~s)/ ).

Working again in the approximation where this exponential term is much less than 1,
we can use the second-order Taylor expansion of the logarithm, In(1 +z) ~ z — 12,

to obtain
— o—(e=p)/kT | 1 _,—2(e—p)/kT
InZ, =e(#/ + e3¢ VET 4 ...,

Therefore the logarithm of the total grand partition function is approximately
nZ = f mnz [e-(e—#)/ﬂ“ Fe .l_e—zts—m/kT]
g L 2

™ g 1 .
= —2-8*‘/ e [ ] n?e/*T dn + Ee"/ o f nie—tMT dn] :
0 0

Now change variables again to « = \/¢/kT = n+/h?/8mL?kT:

2 3/2 o0 oo
InZ= %(S—T%—T—) et/*T [/ z%e™ dr + -;—e“/"T/ 22~ a‘.a:]
0 0
it (_SmLﬁ’“._T )3’ 2wt [V L upr VT 1
2\ 172 1R

27] ka i 1 L’ 1
s % p/kT u/kT| _ w/kT p/kT .
= (——’ = ) e [1 + ——\/_e ] = —e [1 -+ —\/_e ]

For the first factor of e/*T, we can substitute the result of part (b). The second term
in brackets, however, is already small compared to 1 so there we can just plug in the
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(e)

(f)

lowest-order result, e*/*T = Nvg/V. Multiplying everything out and keeping only the
two largest terms, we obtain

V Nv, 1 Nw 1 Nv Ny,
1n3=——£[1—— QH1+ Q]:N[1- 1.
vg V V8 V 2v/8 V 42V
To get the pressure, we just multiply by kT/V:
_ NkT [1 _ Nuvg ]
vV 4/2v ]’

Comparison to the second-order virial expansion,

PV = NkT(I + g,(/?))

P

gives for the second virial coefficient

By =-Dava __Na( W )3’2
42 4/2\2mrmkT )

For helium-4 atoms, this evaluates to

23 =1 -34 1..\2 3/2
B(T) = _6.02 X 10%° mol ( (6.63 x 10 J-s) ) T-3/2

4/2 27(4)(1.66 x 10-27 kg)(1.38 x 10-22 J/K)
= —(7.07 x 10~° m*K*?/mol) - T=%/? = —(70.7 cm®-K*/2/mol) - T—3/2.

So at T' = 1 K, we predict B(T') = —70.7 cm®/mol, while at 2 K, we predict B(T) =
—25.0 cm®/mol. Experimental values of B(T') for helium are given in Figure 8.2. The
lowest-temperature point is for 2 K, with B(T) = —174 cm3/mol. Thus, quantum’
statistics makes a measurable contribution to B(T') for helium at low temperatures,
although it is not the dominant effect, as discussed in Section 8.1. A plot of the
predicted contribution to B(T') is shown below.

For spin-1/2 fermions, we must make two modifications to the preceding calculation.
First, we must change just about every minus sign to plus and vice-versa; second, we
must take the two possible spin orientations into account. Starting with the distribu-
tion function in part (a), the — in the denominator becomes +, so the relative sign
between the first two terms in the expansion becomes —. This relative sign change
carries all the way through part (b). Meanwhile, the extra factor of 2 shows up in the
density of states, so equation (1) becomes

L [1 - —l—-e“/“TJ.
vq V8

The remaining equations of part (b) are similarly modified; in particular,

Nv 1 Nv
B/ kT _ Q S Botl 18
) Y% [l""\/gzv]
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Part (c) is the same as before. In part (d), the sum over n picks up an extra factor
of 2, which carries through to the integral for In Z. Furthermore, the single-mode
grand partition function is now Z, =1+ e—(«~#/kT by equation 7.21. This change
converts the relative + sign in the next several lines to a —. Eventually we obtain

InZ = ﬂenﬂcT [1 - _Len/kT] )

vQ 2v/8

The overall factor of 2 cancels when we plug in our formula for e#/*T, but we still get
an extra factor of 1/2 in the correction term:

1 N'UQ [ 1 N'UQ] [ 1 NUQ]
mZ=N|1+ —=-F||1-—=—=7|=N|1+—5 .

[ \/§2V] 28 2V 28 2V
Thus, the correction term is only half as large as in the spin-0 case (for a given m
and T), and is positive instead of negative. This also goes for the correction to the
pressure, and for the second virial coefficient,

NA'UQ _+NA( h2 )3/2
82 8v2 \2mrmkT )

Since a helium-3 atom has 3/4 the mass of a helium-4 atom, we predict that the mag-
nitude of the virial coefficient for helium-3 should be (1/2)(4/3)*? = 0.77 times that
for helium-4, for instance, 54.4 cm®/mol at 1 K. The plot below shows the predictions
for both isotopes as a function of temperature.
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