Problem 1.

A large number N of identical bosonic atoms, all in the same spin state, are confined inside a cube of length L. The orbitals are labelled by quantum numbers n_x , n_y , n_z with values $1,2,3,\ldots$. The orbital energies are $\varepsilon_{n_x,n_y,n_z}=(n_x^2+n_y^2+n_z^2)h^2/(8mL^2)$.

(A) What is the lowest-energy orbital and what is its energy ε_0 ?

$$n_x = 1, n_y = 1, n_z = 1$$

 $C_0 = 3 \frac{L^2}{8mL^2}$

(B) Describe the ground state of the system of N atoms. What is its total energy U?

all N atoms in the lowest energy orbital:
$$n_x=1, n_y=1, n_z=1$$

$$U=NE_o=N\frac{3h^2}{8mL^2}$$

Suppose the atoms are in equilibrium at temperature T and chemical potential μ .

(C) What is the average number N_0 of atoms in the lowest-energy orbital.

$$N_0 = \frac{1}{e^{\beta(\epsilon_0 - \mu)} - 1}, \beta = \frac{1}{e^T}$$

(D) Express the average total number \bar{N} of atoms as a sum over quantum numbers (with definite upper and lower limits).

$$\overline{N} = \sum_{n_{y}=1}^{\infty} \sum_{n_{y}=1}^{\infty} \sum_{n_{z}=1}^{\infty} \frac{1}{e^{\beta(\epsilon_{n_{x}n_{y}n_{z}}-\mu)}-1}$$

(E) Give the best possible upper bound on the chemical potential μ . What is this upper bound in the thermodynamic limit?

$$\mu < \mathcal{E}_0$$
thermodynamic limit: $L \rightarrow \infty \Rightarrow \mathcal{E}_0 \rightarrow 0$
 $\mu \leq 0$

(F) Define the thermodynamic limit in terms of the variables N, L, and T.

$$N \rightarrow \infty$$
 $L \rightarrow \infty$ with $\frac{N}{L^3}$ fixed

T fixed

Now focus on the thermodynamic limit for this system of N identical bosonic atoms, all in the same spin state, confined to a volume $V = L^3$.

(G) Express the orbital energy ε as a function of the momentum.

$$E = \frac{p^2}{2m}$$

(H) Determine the critical temperature T_c for Bose-Einstein condensation as a function of the number density N/V. (The integrals at the bottom of the page may be useful.)

$$N = \frac{V}{h^3} \int d^3p \frac{1}{e^{\beta p^2/2m} - 1} = \frac{V}{h^3} S(\frac{3}{2}) (2\pi m kT)^{3/2}$$

$$kT_c = \frac{h^2}{2\pi m} \left(\frac{1}{S(3/2)} \frac{N}{V}\right)^{2/3}$$

(I) For temperatures $T > T_c$, express N and the total energy U in terms of momentum integrals.

$$N = \frac{V}{h^3} \int_{a}^{b} \beta p \frac{1}{e^{B(\epsilon - \mu)} - 1}$$

$$U = \frac{V}{h^3} \int_{a}^{b} \beta p \frac{\epsilon}{e^{B(\epsilon - \mu)} - 1}$$

$$\epsilon = \frac{p^2}{2m}$$

(J) For temperatures $T < T_c$, express N and U in terms of momentum integrals (with μ eliminated in favor of N_0).

$$N = N_0 + \frac{V}{h^3} \int_0^3 d^3p \frac{1}{e^{\beta \epsilon} - 1}$$

$$U = N_0 \epsilon_0 + \frac{V}{h^3} \int_0^3 d^3p \frac{\epsilon}{e^{\beta \epsilon} - 1}$$

$$\epsilon = \frac{p^2}{2m}$$

(K) For $T < T_c$, determine N_0 as a function of T. Express the condensate fraction N_0/N as a function of T/T_c only.

of
$$T/T_c$$
 only.
 $N = N_0 + \frac{V}{h^3} S(\frac{3}{2}) (2\pi m | cT)^{3/2}$ $N_0 = N - \frac{V}{h^3} S(\frac{3}{2}) (2\pi m | cT)^{3/2}$
divide by $N = \frac{V}{h^3} (2\pi m | cT)^{3/2}$
 $\frac{V_0}{N} = 1 - (\frac{T}{T_c})^{3/2}$

(L) For $T < T_c$, determine U as a function of T.

$$\int d^3p \frac{1}{\exp(p^2/2mkT) - 1} = \zeta(\frac{3}{2})(2\pi mkT)^{3/2}, \quad \int d^3p \frac{p^2}{\exp(p^2/2mkT) - 1} = \frac{3}{2\pi}\zeta(\frac{5}{2})(2\pi mkT)^{5/2}$$

Problem 2.

The differential power in electromagnetic radiation emitted by a black body of surface area Aand temperature T is

$$d\mathcal{P} = A \frac{2\pi h}{c^2} \frac{f^3}{\exp(hf/kT) - 1} df.$$

(A) Stefan's Law states that the total power radiated by the black body is $\mathcal{P} = \sigma T^4 A$, where σ is a constant. Express σ in terms of physical constants and an integral over a dimensionless

able x.

$$P = A \frac{2\pi h}{c^2} \int_0^\infty df \frac{f^3}{e^{hf/kr}-1} = A \frac{2\pi h}{c^2} \left(\frac{k\Gamma}{h}\right)^4 \int_0^\infty dx \frac{x^3}{e^{x}-1}$$

$$C = \frac{2\pi k^4}{c^2 h^3} \int_0^\infty dx \frac{x^3}{e^{x}-1}$$

(B) Wien's Law states that the frequency f_{max} at which the maximum power is radiated is proportional to T. The law can be expressed as $f_{\text{max}} = xkT/h$, where x is a numerical constant. Derive an equation for x.

maximum power
$$\Rightarrow \frac{d}{df} \frac{2\pi h}{c^2} \frac{f^3}{e^{hf/kT}-1} = 0$$

$$\frac{3f^2}{e^{hf/kT}-1} - \frac{f^3}{(e^{hf/kT}-1)^2} \frac{e^{hf/kT}h}{e^{hf/kT}} = 0$$

$$\frac{3k^2}{e^{hf/kT}-1} \frac{3k^2}{(e^{k-1})^2} - \frac{\chi^2 e^k}{(e^{k-1})^2} = 0$$
The electromagnetic energy inside a cavity of volume V in a conductor with temperature T

can be expressed as an integral over the photon energy ε :

$$U = V \frac{8\pi}{h^3 c^3} \int_0^\infty \frac{\varepsilon^3}{\exp(\varepsilon/kT) - 1} d\varepsilon.$$

(C) State as precisely as possible the relation between the shape of the frequency spectrum emitted by a black body of temperature T and the shape of the photon energy distribution in a spherical cavity at the same temperature T.

frequency spectrum has same shope as energy distribution if we set
$$f = E/h$$

(D) Suppose the black body is a sphere of radius R and the cavity is also a sphere of radius R. State as precisely as possible the relation between the total power \mathcal{P} emitted by the black body and the total energy U in the cavity.

$$P = 4\pi R^{2} \cdot \frac{2\pi}{c^{2}h^{3}} (kT)^{4} \int_{0}^{\infty} dx \frac{x^{3}}{e^{x}-1}$$

$$U = \frac{4}{3}\pi R^{3} \cdot \frac{8\pi}{h^{3}C^{3}} (kT)^{4} \int_{0}^{\infty} dx \frac{x^{3}}{e^{x}-1}$$

$$P = \frac{3C}{4R} U$$

(E) Suppose a small cylindrical hole of radius r is drilled into the conductor so that electromagnetic radiation can leak out from the cavity through the hole. What is the power radiated from the hole?

In a 2-dimensional universe, electromagnetic (EM) waves have only one tranverse polarization mode. Consider a 2-dimensional cavity in a conductor in such a universe.

If the cavity is a square of area L^2 , the normal modes of standing EM waves can be labelled by integers $n_x, n_y = 1, 2, 3, \ldots$ The amplitude a(t) of a normal mode oscillates with frequency $f = \sqrt{n_x^2 + n_y^2} \, c/2L.$

(E) Suppose the amplitude of each normal mode can be treated as a classical harmonic oscillator that is in equilibrium at temperature T. Use the equipartition theorem to determine the average energy \bar{E} in a single standing wave of frequency f.

1 oscillator => 2 quadrate degrees of freedom equipartition theorem; E=2(2kT)=kT

(F) Use the equipartition theorem to determine the average total energy \bar{U} in all the EM standing waves. Is there anything unphysical about the result for \bar{U} ?

 $\overline{U} = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} kT = \infty \cdot kT$ ultraviolet catastrophe: U is divergent

(G) Suppose the energy in a oscillator of frequency f is quantized with quantum hf: E = nhf, $n = 0, 1, 2, \dots$ If the oscillator is in equilibrium at temperature T, what is its average energy

 $\overline{B} = \frac{\sum_{h=0}^{\infty} nhfe^{-\beta nhf}}{\sum_{e=-\beta nhf}^{\infty}} = \frac{hf}{e^{\beta hf}-1}$

(H) Under the same assumptions, what is the average total energy \bar{U} in all the EM standing waves?

$$\overline{U} = \sum_{n_{x}=1}^{\infty} \frac{h \sqrt{n_{x}^{2} + n_{y}^{2}} c/2L}{e \beta h \sqrt{n_{x}^{2} + n_{y}^{2}} c/2L - 1}$$

Now consider this system in the thermodynamic limit. Suppose the electromagnetic energy is in the form of photons, which are massless bosons with energy-momentum relation $\varepsilon = \sqrt{p_x^2 + p_y^2} c$ and chemical potential 0.

(I) What is the average energy per area?

hat is the average energy per area?
$$U = \frac{A}{h^2} \int_{0}^{h} P \frac{\epsilon}{e^{\beta \epsilon - 1}}, \epsilon = pc \qquad \frac{U}{A} = \frac{2\pi}{h^2} \int_{0}^{\infty} p dp \frac{pc}{e^{\beta pc} - 1}$$

(J) What is the average number of photons per area?

$$N_{photon} = \frac{A}{h^2} \int_0^3 d^3p \frac{1}{e^{BE-1}}, e = pc$$
 $\frac{N_{photon}}{A} = \frac{2\pi}{h^2} \int_0^\infty pdp \frac{1}{e^{BPC-1}}$

Problem 3.

A single orbital with orbital energy ε is in both thermal and chemical equilibrium with a reservoir of temperature T and chemical potential μ .

Suppose the only possible occupation numbers n of the orbital are 0 and 1.

(A) What is the ground state partition function \mathcal{Z}_1 for the single orbital?

$$Z_1 = \sum_{n=0}^{1} e^{-\beta(\epsilon-\mu)n} = 1 + e^{-\beta(\epsilon-\mu)}$$

(B) What are the probabilities $\mathcal{P}(0)$ and $\mathcal{P}(1)$ for the orbital to have occupation numbers 0 and 1?

$$P(0) = \frac{1}{1 + e^{-\beta(\epsilon - \mu)}} \qquad P(1) = \frac{e^{-\beta(\epsilon - \mu)}}{1 + e^{-\beta(\epsilon - \mu)}}$$

(C) What is the average occupation number \bar{n} ?

$$\bar{n} = \frac{1}{e^{\beta(\varepsilon-\mu)} + 1}$$

(D) What is the average energy \bar{E} of the orbital?

Suppose the occupation number n of the orbital can be any nonnegative integer: $0,1,2,3,\ldots$

(E) What is the ground state partition function \mathcal{Z}_1 for the single orbital?

$$Z_1 = \sum_{n=0}^{\infty} e^{-\beta(\xi-\mu)n} = \frac{1}{1-e^{-\beta(\xi-\mu)}}$$

(F) What is the probability distribution $\mathcal{P}(n)$ for the occupation number n?

$$P(n) = \frac{1}{Z_i} e^{-\beta(\epsilon - \mu)n}$$

(G) What is the average occupation number \bar{n} ?

$$\bar{n} = \frac{1}{e^{\beta(t-\mu)-1}}$$

(H) What is the energy E in the orbital if its occupation number is n? What is the average energy \bar{E} of the orbital?

$$E = n\varepsilon$$

$$E = \frac{\varepsilon}{\beta \xi - M - 1}$$

A system consists of many identical fermions, all in the same spin state, with temperature T and chemical potential μ . The fermions have K distinct orbitals labelled by $k=1,2,\ldots,K$ with energies $\varepsilon_1,\,\varepsilon_2,\,\ldots,\,\varepsilon_K$. Express each of the following in terms of a sum over the orbitals.

(I) the average number \bar{N} of fermions.

$$N = \sum_{k=1}^{K} \frac{1}{e^{\beta(\epsilon_k - \mu)} + 1}$$

(J) the average total energy \bar{U} .

$$\overline{U} = \sum_{k=1}^{K} \frac{\epsilon_{k}}{e^{\beta(\epsilon_{k}-\mu)}+1}$$

(K) the logarithm of the grand partition function \mathcal{Z} .

$$log \mathcal{I} = \sum_{k=1}^{K} log (1 + e^{-B(E_k - M)})$$

in a volume V

Suppose the system consists of exactly N identical noninteracting fermions (all in the same spin state, at temperature T. In the thermodynamic limit, it can be described using the grand canonical ensemble with temperature T and some chemical potential μ .

(K) Express the orbital energy as a function of the momentum of the fermion. Express the sum over orbitals as a momentum integral.

$$E = \frac{5^2}{5m}$$

$$\frac{1}{5} = \frac{1}{5} \int_{a}^{3} d^3p$$

(L) Write down the equation whose solution determines the chemical potential μ . (It should involve a sum over orbitals.)

$$N = \overline{N}$$

$$N = \frac{V}{h^3} \int d^3p \frac{1}{e^{\beta(p^2/2m)} + 1}$$