Hints for Burgess and Moore, Chapter 2

Problem 2.1 Anomaly cancellation and charge assignments
30 points: 10 points for the hypercharges
10 points for each anomaly cancellation condition

Express each of the hypercharges as a function of \(\epsilon \) and \(\delta \). (Note that the hypercharge of the Higgs field is \(+\frac{1}{2} \), not \(-\frac{1}{2} \).) Express both of the anomaly cancellation conditions in terms of \(\epsilon \) and \(\delta \). Then solve for \(\epsilon \) and \(\delta \).

Problem 2.2 Muon decay
10 points

Problem 2.3 Right-handed neutrinos
40 points: 10 points for each part

2.3.1 First write down the new renormalizable terms for a single generation. Then generalize it to 3 generations. I have not yet figured out why the term \(LP_L N \phi \) is not allowed. If you figure it out, please explain it to me.

Problem 2.4 Two Higgs doublet models
50 points: 10 points for each part

2.4.1 Use \(Q = T_3 + Y \).

2.4.3 The invariant \(c = \phi^T \epsilon \psi \) is complex. Its complex conjugate can be written \(c^* = \psi^\dagger \tilde{\phi} \).

2.4.4 The conditions for the electromagnetic \(U(1) \) symmetry to be unbroken are
(a) \(e^{i\theta Q} \phi_{\text{min}} = \phi_{\text{min}} \) (or \(Q \phi_{\text{min}} = 0 \)), where \(Q \) is the 2 x 2 charge matrix for \(\phi \),
(b) \(e^{i\theta Q} \psi_{\text{min}} = \psi_{\text{min}} \) (or \(Q \psi_{\text{min}} = 0 \)), where \(Q \) is the 2 x 2 charge matrix for \(\psi \).

The kinetic term for the scalar fields is

\[
\mathcal{L}_{\text{kinetic}} = -(D^\mu \phi)^* D_\mu \phi - (D^\mu \psi)^* D_\mu \psi
\]

The mass term \(\mathcal{L}_{\text{mass}} \) for the gauge bosons is obtained by setting \(\phi = \phi_{\text{min}} \) and \(\psi = \psi_{\text{min}} \). The masses of the \(W^\pm \) and \(Z^0 \) bosons are obtained by expressing it in the form

\[
\mathcal{L}_{\text{mass}} = -M_W^2 W^{-\mu} W^\mu + \frac{1}{2} M_Z^2 Z^\mu Z_\mu
\]
Problem 2.5 Adjoint Higgs field
30 points: 10 points for each part

2.5.3 Follow the same strategy as in Problem 2.4.

Problem 2.6 Gauged $B – L$ coupling
50 points: 10 points for each part

Problem 2.7 Colored scalar fields
Skip it!

Problem 2.8 Adjoint representation fermions
30 points: 10 points for each part