Wavefunction Renormalization in Yukawa Model

The Lagrangian for the Yukawa model with a Dirac spinor field ψ and a real scalar field ϕ is

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - M\bar{\psi}\psi + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} - g_{0}\phi\bar{\psi}\psi.$$

A. Draw the tree-level Feynman diagram for the scattering of the fermion from a very heavy particle by the exchange of the boson. Write down the matrix element $i\mathcal{M}$ for scattering with momentum transfer q = p' - p.

$$i \mathcal{M} = \frac{1}{12 = p^{1}p} = G \frac{i}{2^{2}-m^{2}} \bar{u}(p^{2}) (-ig_{0}\gamma_{5}) u(p)$$

B. Draw the two one-loop diagrams and the tree diagram with a boson self-energy counterterm, labeling the momenta.

C. Draw the diagrams of order g_0^2 for the fermion self-energy $-i\Sigma(p)$: the one-loop diagram and the tree diagram with a fermion self-energy counterterm.

D. Use Feynman rules to write down the expression for the one-loop diagram.

If dimensional regularization is used for ultraviolet divergences, the expansion of the fermion self-energy in powers of $p \!\!\!/ - M$ (in the limit $m \ll M$) is

$$\Sigma(p) = \frac{g_0^2}{16\pi^2} \left[\left(\frac{1}{d-4} + \frac{1}{2} - \log \frac{M}{\bar{\mu}} \right) M + \left(\frac{1}{d-4} + 1 - \log \frac{M}{\bar{\mu}} \right) (p - M) + \left[\text{finite} \right] (p - M)^2 + \dots \right] + \left[\delta M + \delta Z(p - M) \right].$$

E. How must δM and δZ depend on d for $\Sigma(p)$ to have a finite limit as $d \to 4$?

$$SM = \frac{-g_0^2}{10\pi^2} \frac{1}{d-4}M + (finite)$$
 $SZ = \frac{-g_0^2}{10\pi^2} \frac{1}{d-4} + (finite)$

If M is the physical mass, the residue Z_f of the pole in the complete fermion propagator is defined by

$$\frac{i}{\not p - M - \Sigma(\not p)} \longrightarrow \frac{iZ_f}{\not p - M}$$
 as $\not p \to M$.

F. Use the expression for $\Sigma(p)$ to determine Z_f .

$$Z_f = \frac{1}{1 - 2!(p=M)} = \frac{1}{1 - \frac{g_o^2}{16\pi^2} \left(\frac{1}{d-4} + 1 - \log \frac{M}{\mu}\right) + SZ}$$

You can choose to do no fermion wavefunction renormalization: $\delta Z = 0$. The matrix element for scattering of the fermion from a very heavy particle is then

$$\mathcal{M} = G \, \bar{u}(p') \gamma_5 u(p) \left(\sqrt{Z_f} \right)^2 g_0 \left\{ 1 + g_0^2 \left[\Pi(q^2) + \Gamma(q^2) \right] + \dots \right\}.$$

G. Expand $(\sqrt{Z_f})^2 g_0$ to order g_0^3 .

$$\left(\sqrt{Z_{\varsigma}}\right)^{2}g_{\circ} = g_{\circ}\left\{1 + \frac{g_{\circ}^{2}}{16\pi}\left(\frac{1}{d-4} + 1 - \log\frac{M}{\mu}\right)\right\}$$

With on-shell fermion wavefunction renormalization, g_0 is replaced by g_{os} . H. What is δZ ? What is Z_f ?

$$SZ = \frac{g_0^2}{10\pi^2} \left(\frac{1}{d-4} + 1 - \log \frac{\pi}{L} \right)$$
 $Z_f = 1$

I. Expand $(\sqrt{Z_f})^2 g_{os}$ to order g_{os}^3 . Determine the relation between g_{os} and g_0 to order g^3 .

$$(\sqrt{z_s})g_{os} = g_{os}$$

With fermion wavefunction renormalization by minimal subtraction, g_0 is replaced by $g_{\rm ms}$.

J. What is δZ ? What is Z_f ?

$$SZ = \frac{g_s^2}{16\pi^2} \frac{1}{1-4}$$
 $Z_s = \frac{1}{1-\frac{g_s^2}{16\pi^2} \left[1-\log\frac{M}{\mu}\right]}$

K. Expand $(\sqrt{Z_f})^2 g_{\text{ms}}$ to order g_{ms}^3 . Determine the relation between g_{ms} and g_0 to order g^3 . Determine the relation between g_{ms} and g_0 to order g^3 .

$$(\sqrt{2}_{f})^{2}g_{ms} = g_{0}\{1 + \frac{g_{0}^{2}}{16\pi}[1 - l_{n}\frac{M}{\pi}]\}$$

$$g_{ms} = g_{0s}\{1 + \frac{g_{0s}^{2}}{16\pi}[1 - l_{n}\frac{M}{\pi}]\}$$