- 1. A particle of mass m slides along the smooth upper surface of a cylinder of radius R in a constant gravitational field. Choose Cartesian coordinates (x, y) so that the surface of the cylinder is $x^2 + y^2 = R^2$ and the acceleration of the gravitational field is $-g\hat{y}$. For simplicity, consider only motion of the particle in the x-y plane.
- (a) Express the condition that the normal force keeps the particle on the surface of the cylinder as a holonomic constraint on the Cartesian coordinates (x, y). Express it as a holonomic constraint on the polar coordinates (ρ, θ) defined by $x = \rho \cos \theta$ and $y = \rho \sin \theta$.

$$\chi^{2}+y^{2}-R^{2}=0$$
 $P-R=0$

(b) Write down the kinetic energy T and the potential energy V of the particle using Cartesian coordinates. Write them down using polar coordinates.

$$T = \pm m \left(\dot{\chi}^2 + \dot{y}^2 \right) = \pm m \left(\dot{\rho}^2 + \rho^2 \dot{\theta}^2 \right)$$

$$V = mgy = mg \rho \sin \theta$$

(c) As long as the particle remains on the surface of the cylinder, its position can be specified by the polar angle θ . Write down the Lagrangian for the particle in terms of the coordinate θ and its time derivative $\dot{\theta}$.

(d) If it is moving on the surface of the cylinder, the particle must be accelerating towards the axis of the cylinder. Express its acceleration in terms of θ and $\dot{\theta}$.

$$\frac{N^2}{p} = \frac{(p \dot{\theta})^2}{p} = p \dot{\theta}^2 = R \dot{\theta}^2$$

(e) The particle can fly off the surface of the cylinder if its velocity becomes too large. Use Newton's equation for the radial coordinate ρ to deduce the conditions on θ and $\dot{\theta}$ for the effects of the normal force to be treated as a holonomic constraint.

$$MR\mathring{\theta}^{2} = Mgsin\theta - N$$

$$N = Mgsin\theta - MR\mathring{\theta}^{2}$$

$$N > 0 \implies gsin\theta \ge R\mathring{\theta}_{1}^{2}$$

2. The Kepler problem for a planet with orbit in the x-y plane can be summarized by the following Lagrangian for its polar coordinates (r, θ) :

$$L = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{GMm}{r},$$

where $\mu = Mm/(M+m)$ is the reduced mass.

(a) Write down the expression for the energy E of the planet in terms of the polar coordinates r and θ . What property of the Lagrangian guarantees that E is conserved?

(b) Write down the expression for the z-component of the angular momentum L_z of the planet in terms of the polar coordinates r and θ . What property of the Lagrangian guarantees that L_z is conserved?

(c) Use conservation laws to reduce the equations of motion to two first-order differential equations for r and θ of the form

$$\dot{r} = f(r,\theta), \qquad \dot{\theta} = g(r,\theta).$$

$$\dot{\theta} = \pm \sqrt{\frac{Z}{\mu} \left(E + \frac{GHm}{r} - \frac{L_{Z}^{2}}{2\mu r^{2}}\right)}$$

$$\dot{\theta} = \frac{L_{Z}}{\mu r^{2}}$$

(d) Use the first-order differential equations for r(t) and $\theta(t)$ to derive a differential equation for the orbit $r(\theta)$.

$$\frac{dr}{d\theta} = \frac{\dot{r}}{\dot{\theta}} = \frac{f(r,\theta)}{g(r,\theta)}$$

(e) Use conservation laws to derive Kepler's 2nd law: the rate at which area is swept out by the position vector of the planet is constant in time.

$$\mathring{A} = \frac{1}{2}r^2\mathring{o} = \frac{1}{2\mu}(\mu r^2\mathring{o}) = \frac{1}{2\mu}$$
 constant

3. The Lagrangian for a charged particle in a constant magnetic field $B_0\hat{z}$ can be written

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \frac{1}{2}B_0(\dot{x}y - \dot{y}x).$$

(a) Write down Lagrange's equation for the coordinate x in as explicit a form as possible.

$$\frac{\partial L}{\partial x} = \frac{1}{2}B_{0}\dot{y}$$

$$\frac{\partial L}{\partial x} = m\dot{x} - \frac{1}{2}B_{0}\dot{y}$$

$$m\dot{x} - \frac{1}{2}B_{0}\dot{y} = \frac{1}{2}B_{0}\dot{y}$$

$$m\ddot{x} - B_{0}\dot{y} = 0$$

(b) Express the Hamiltonian H as a function of the coordinates (x, y, z) and their time derivatives.

(c) Determine the canonical momenta (p_x, p_y, p_z) that are conjugate to (x, y, z).

$$R_{x} = \frac{\partial L}{\partial \dot{x}} = m\dot{x} - \frac{1}{2}B_{0}y$$

$$P_{y} = \frac{\partial L}{\partial \dot{y}} = m\dot{y} + \frac{1}{2}B_{0}x$$

$$P_{z} = \frac{\partial L}{\partial \dot{z}}$$

(d) Express the Hamiltonian H as a function of the canonical momenta (p_x, p_y, p_z) and the coordinates (x, y, z).

$$H = \frac{1}{2} m \left[\left(\frac{P_{x} + \frac{1}{2} B_{0} y}{m} \right)^{2} + \left(\frac{P_{y} + \frac{1}{2} B_{0} x}{m} \right)^{2} + \left(\frac{P_{z}}{m} \right)^{2} \right]$$

$$= \frac{1}{2} m \left[P_{x}^{2} + P_{y}^{2} + P_{z}^{2} + B_{0} (y P_{x} - x P_{y}) + \frac{1}{4} B_{0}^{2} (x^{2} + y^{2}) \right]$$

(e) Write down Hamilton's equations for the coordinate x and for the canonical momentum p_x in as explicit a form as possible.

$$\dot{X} = \frac{\partial H}{\partial P_x} = \frac{1}{h} (P_x + \frac{1}{2} B_{0y})$$

$$\dot{P}_{x} = -\frac{\partial H}{\partial x} = -\frac{1}{m} \left(p_{y} - \frac{1}{2} \beta_{1} x \right) \left(-\frac{1}{2} \beta_{0} \right)$$