and M is the mass of the Earth. The equation of motion of the mass in a frame co-moving with the satellite is

$$\ddot{\mathbf{r}} = -G M \frac{(\mathbf{r} - \mathbf{a})}{(r^2 - 2\mathbf{r} \cdot \mathbf{a} + a^2)^{3/2}} - \boldsymbol{\omega} \times [\boldsymbol{\omega} \times (\mathbf{r} - \mathbf{a})] - 2\boldsymbol{\omega} \times \dot{\mathbf{r}}, \qquad (46)$$

where $\mathbf{a} = a \mathbf{e}_x$ is the position vector of the center of the Earth. To first-order in r/a, this equation reduces to

$$\ddot{\mathbf{r}} = \omega^2 \left[(a+3x) \,\mathbf{e}_x - \mathbf{r} \right] - \omega^2 \left(a \,\mathbf{e}_x - \mathbf{r} \right) - 2\,\omega \,\mathbf{e}_z \times \dot{\mathbf{r}},\tag{47}$$

in the x-y plane, where use has been made of (45). Hence,

$$\ddot{\mathbf{r}} = 3\,\omega^2 \,x\,\mathbf{e}_x - 2\,\omega\,\mathbf{e}_z \times \dot{\mathbf{r}},\tag{48}$$

which yields

4.

$$\ddot{x} = 3\omega^2 x + 2\omega \dot{y}, \tag{49}$$

$$\ddot{y} = -2\omega \dot{x}. \tag{50}$$

Let us search for a solution of the form

$$x = x_0 \cos \omega t, \tag{51}$$

$$y = y_0 \sin \omega t. (52)$$

Substitution into (49) and (50) yields $y_0 = -2x_0$. Hence, the solution is

$$x = x_0 \cos \omega t, \tag{53}$$

$$y = -2x_0 \sin \omega t, \tag{54}$$

where x_0 is arbitrary. This is an elliptical orbit, centered on the satellite, whose major axis in the y-direction is twice that in the x-direction, and which orbits in the opposite sense to the satellite (i.e., the orbital angular momentum is in the minus z direction).

(a) Let the plate lie in the x-y plane such that its long sides run parallel to the x-axis. Let the origin of the coordinate system lie at the centroid

(which is also the center of mass). The mass per unit area of the plate is $m/(2a^2)$. Thus,

$$I_{xx} = \frac{m}{2 a^2} \int_{-a}^{a} dx \int_{-a/2}^{a/2} y^2 dy = \frac{1}{12} m a^2,$$
 (55)

$$I_{yy} = \frac{m}{2a^2} \int_{-a}^{a} x^2 dx \int_{-a/2}^{a/2} dy = \frac{1}{3} m a^2,$$
 (56)

$$I_{xy} = -\frac{m}{2a^2} \int_{-a}^{a} x \, dx \int_{-a/2}^{a/2} y \, dy = 0.$$
 (57)

Moreover, $I_{xz} = I_{yz} = 0$, by symmetry, and

$$I_{zz} = I_{xx} + I_{yy} = \frac{5}{12} m a^2,$$
 (58)

by the perpendicular axis theorem. Since all of the products of inertia are zero, the x, y, z axes are the principle axes of rotation, and the associated principle moments of inertia are $(1/12) m a^2$, $(1/3) m a^2$, and $(5/12) m a^2$, respectively.

(b) Let the origin of the coordinate system lie at a corner. In this case,

$$I_{xx} = \frac{m}{2a^2} \int_0^{2a} dx \int_0^a y^2 dy = \frac{1}{3} m a^2,$$
 (59)

$$I_{yy} = \frac{m}{2a^2} \int_0^{2a} x^2 dx \int_0^a dy = \frac{4}{3} m a^2,$$
 (60)

$$I_{xy} = -\frac{m}{2 a^2} \int_0^{2a} x \, dx \int_0^a y \, dy = -\frac{1}{2} m \, a^2.$$
 (61)

As before, $I_{xz} = I_{yz} = 0$, by symmetry, and

$$I_{zz} = I_{xx} + I_{yy} = \frac{5}{3} m a^2,$$
 (62)

by the perpendicular axis theorem. The fact that I_{xz} and I_{yz} are both zero indicates that the z-axis is a principle axis of rotation with the

associate principle moment of inertia $(5/3) m a^2$. The fact that $I_{xy} \neq 0$ indicates that the x and y axes are not principle axes of rotation. In order to find the principle axes in the x-y plane we need to solve

$$\begin{pmatrix} I_{xx} - \lambda & I_{xy} \\ I_{xy} & I_{yy} - \lambda \end{pmatrix} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{63}$$

where λ is a principle moment of inertia, and α is the angle the principle axis subtends with the x-axis. The above equation reduces to

$$\begin{pmatrix} 1/3 - \hat{\lambda} & -1/2 \\ -1/2 & 4/3 - \hat{\lambda} \end{pmatrix} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{64}$$

where $\hat{\lambda} = \lambda/(m a^2)$. Setting the determinant of the matrix to zero, we obtain

$$\hat{\lambda}^2 - \frac{5}{3}\hat{\lambda} + \frac{7}{36} = 0. \tag{65}$$

The solutions are

$$\hat{\lambda} = \frac{5}{6} \pm \frac{1}{\sqrt{2}}.\tag{66}$$

Also, from the first line of (64),

$$\tan \alpha = 2\left(1/3 - \hat{\lambda}\right). \tag{67}$$

Hence, the two principle axes in the x-y plane are such that $\alpha=22.5^{\circ}$, $\lambda=0.126\,m\,a^2$, and $\alpha=112.5^{\circ}$, $\lambda=1.54\,m\,a^2$.

8.2 5) From the lecture notes

$$\tan \theta = \frac{I_{\perp}}{I_{\parallel}} \tan \alpha. \tag{68}$$

We wish to find

$$\beta = \alpha - \theta. \tag{69}$$

A standard trigonometric identity tells us that

$$\tan \beta = \frac{\tan \alpha - \tan \theta}{1 + \tan \alpha \, \tan \theta}.\tag{70}$$

Thus, it follows from (68) that

$$\tan \beta = \frac{(I_{\parallel} - I_{\perp}) \tan \alpha}{I_{\parallel} + I_{\perp} \tan^2 \alpha}.$$
 (71)

6. From the previous question,

$$\tan \beta = \frac{(x-1) \tan \alpha}{x + \tan^2 \alpha},\tag{72}$$

where $x = I_{\parallel}/I_{\perp}$. So

$$\frac{d\tan\beta}{dx} = \frac{\tan\alpha \left(1 + \tan^2\alpha\right)}{(x + \tan^2\alpha)^2}.$$
 (73)

It follows that $d \tan \beta/dx > 0$ for $0 < \alpha < \pi/2$. Hence, the maximum value of β (at fixed α) corresponds to the maximum value of x, which is 2. So,

$$\tan \beta_{max} = \frac{\tan \alpha}{2 + \tan^2 \alpha}. (74)$$

Now,

$$\frac{d\tan\beta_{max}}{d\tan\alpha} = \frac{2 - \tan^2\alpha}{(2 + \tan^2\alpha)^2}.$$
 (75)

Thus, by varying α , we obtain the maximum value of β_{max} when $\tan \alpha = \sqrt{2}$. Hence,

$$(\tan \beta_{max})_{max} = \frac{1}{\sqrt{8}}. (76)$$

Hence, we conclude that

$$\beta_{max} = \tan^{-1}\left(\frac{1}{\sqrt{8}}\right) = 19.47^{\circ},$$
 (77)

$$\alpha_{max} = \tan^{-1} \sqrt{2} = 54.73^{\circ}.$$
 (78)

Physics 336K: Newtonian Dynamics

Homework 7: Solutions

(S.4 1.)

Let the z'-axis run along the rod, and let the origin lie midway along the rod. Thus, by symmetry, the x'-, y'-, and z'-axes are principle axes of rotation. Euler's equations are

$$T_{x'} = I_{x'x'} \dot{\omega}_{x'} - (I_{y'y'} - I_{z'z'}) \omega_{y'} \omega_{z'}, \tag{1}$$

$$T_{y'} = I_{y'y'} \dot{\omega}_{y'} - (I_{z'z'} - I_{x'x'}) \omega_{z'} \omega_{x'}, \tag{2}$$

$$T_{z'} = I_{z'z'} \dot{\omega}_{z'} - (I_{x'x'} - I_{y'y'}) \omega_{x'} \omega_{y'}. \tag{3}$$

From standard mechanics, $I_{x'x'} = I_{y'y'} = (1/12) \, m \, l^2$ and $I_{z'z'} = 0$. Now, we are told that ω is constant. Without loss of generality, we can say that ω lies in the x'-z' plane. Hence,

$$\omega = \omega \left(\sin \alpha, \, 0, \, \cos \alpha \right). \tag{4}$$

Now, $\dot{\omega}_{x'} = \dot{\omega}_{y'} = \dot{\omega}_{z'} = 0$. So, Euler's equations yield

$$T_{x'} = 0, (5)$$

$$T_{y'} = \frac{1}{12} m l^2 \omega^2 \sin \alpha \cos \alpha, \tag{6}$$

$$T_{z'} = 0, (7)$$

or

$$\mathbf{T} = \frac{1}{12} m l^2 \omega^2 \sin \alpha \cos \alpha \, \mathbf{e}_{y'}. \tag{8}$$

Furthermore,

$$\mathbf{L} = \omega \left(I_{x'x'} \sin \alpha, \, 0, \, I_{z'z'} \cos \alpha \right) = \frac{1}{12} \, m \, l^2 \, \omega \, \sin \alpha \, \mathbf{e}_{x'}. \tag{9}$$

Now, the rod runs along $\mathbf{e}_{z'}$. Thus, the angular momentum vector is perpendicular to the rod, and the torque is perpendicular to both the rod and

the angular momentum vector. Moreover,

$$L = \frac{1}{12} m l^2 \omega \sin \alpha \tag{10}$$

$$T = \frac{1}{12} m l^2 \omega^2 \sin \alpha \cos \alpha. \tag{11}$$

2. Let the z'-axis run perpendicular to the disk, and let the origin lie at the center of the disk. Thus, by symmetry, the x'-, y'-, and z'-axes are principle axes of rotation. Euler's equations are

$$T_{x'} = I_{x'x'} \dot{\omega}_{x'} - (I_{y'y'} - I_{z'z'}) \omega_{y'} \omega_{z'}, \tag{12}$$

$$T_{y'} = I_{y'y'} \dot{\omega}_{y'} - (I_{z'z'} - I_{x'x'}) \omega_{z'} \omega_{x'}, \tag{13}$$

$$T_{z'} = I_{z'z'} \dot{\omega}_{z'} - (I_{x'x'} - I_{y'y'}) \omega_{x'} \omega_{y'}. \tag{14}$$

From standard mechanics, $I_{x'x'} = I_{y'y'} = (1/4) m a^2$ and $I_{z'z'} = (1/2) m a^2$. Now, we are told that ω is constant. Without loss of generality, we can say that ω lies in the x'-z' plane. Hence,

$$\omega = \omega \left(\sin \alpha, \, 0, \, \cos \alpha \right). \tag{15}$$

Now, $\dot{\omega}_{x'} = \dot{\omega}_{y'} = \dot{\omega}_{z'} = 0$. So, Euler's equations yield

$$T_{x'} = 0, (16)$$

$$T_{y'} = -\frac{1}{4} m a^2 \omega^2 \sin \alpha \cos \alpha, \qquad (17)$$

$$T_{z'} = 0, (18)$$

or

$$\mathbf{T} = -\frac{1}{4} m a^2 \omega^2 \sin \alpha \cos \alpha \, \mathbf{e}_{y'}. \tag{19}$$

Furthermore,

$$\mathbf{L} = \omega \left(I_{x'x'} \sin \alpha, \ 0, \ I_{z'z'} \cos \alpha \right) = \frac{1}{4} m a^2 \omega \sin \alpha \, \mathbf{e}_{x'} + \frac{1}{2} m a^2 \omega \cos \alpha \, \mathbf{e}_{z'}.$$
(20)

Fitzpatrick, Chapter 8

Exercise 8.6

An isolated regist body feels no torques. If it has an api of symmetry, the Euler equations can be written

 $O = I_1 \dot{\omega}_{\chi} + (I_1 - I_1) \omega_{\chi} \omega_{\chi}$

 $0 = I_{1} \dot{\omega}_{y'} - (I_{y'} - I_{1}) \omega_{z'} \omega_{x'}$

 $0 = I_{ll} \dot{\omega}_{z'}$

where Z' is the coordinate along the symmetry axis.

The solutions for rotation around the symmetry whis are

where we is a constant angular frequency. A solution for rotation around a nonsymmetry axis is

We first consider small perturbation to the rotation about the symmetry axis:

The Euler aquations to first order in μ , λ , and ν are

$$0 = I_{\downarrow} \dot{\mu} + (I_{\parallel} - I_{\downarrow}) \omega_{\circ} \lambda$$

$$0 = I_{\perp} - (I_{\parallel} - I_{\perp}) \omega_{0} \mu$$

The general solution are

$$ju(t) = \in coo(\Omega t + 4)$$

$$\lambda(t) = \epsilon \sin(\Omega t + \phi)$$

$$V(t) = \sqrt{6}$$

where $\Omega = \frac{I_H - I_+}{I_-} \omega_0$ and ε , ε , and v are constants. None of the penturbations grow with time, so rotations about the symmetry axis are stable.

We now consider small perturbation to the rotation about the non-symmetry ahis:

The Euler equations to first order in 14, 2, & are

$$0 = I_{\mu} \dot{\mu} - (I_{\mu} - I_{\mu}) \omega_{o} \dot{\lambda}$$

$$\delta = I_{\parallel} \lambda$$

The general solutions are

$$\mu(t) = \mu_0 + \Omega \lambda_0 t$$

$$\lambda(t) = \lambda_0$$

where %, 10, and to are constants. If to 70, the perturbation 11th grows linearly with time. Thus rotations about a nonsymmetry axis are unstable.