Quantum Mechanics - Problem Set #2

TABLE OF INFORMATION

Rest mass of the electron $m_e = 9.11 \times 10^{-31} \text{ kilogram} = 9.11 \times 10^{-28} \text{ gram}$

Magnitude of the electron charge $e = 1.60 \times 10^{-19} \text{ coulomb} = 4.80 \times 10^{-10} \text{ statcoulomb (esu)}$

Avogadro's number $N_0 = 6.02 \times 10^{23}$ per mole

Universal gas constant $R = 8.31 \text{ joules/(mole \cdot K)}$

Boltzmann's constant $k = 1.38 \times 10^{-23}$ joule/K = 1.38×10^{-16} erg/K

Speed of light $c = 3.00 \times 10^8 \text{ m/s} = 3.00 \times 10^{10} \text{ cm/s}$

Planck's constant $h = 6.63 \times 10^{-34}$ joule · second = 4.14×10^{-15} eV · second

 $\tilde{h} = h/2\pi$

Vacuum permittivity $\epsilon_0 = 8.85 \times 10^{-12} \text{ coulomb}^2/(\text{newton} \cdot \text{meter}^2)$

Vacuum permeability $\mu_0 = 4\pi \times 10^{-7} \text{ weber/(ampere \cdot meter)}$

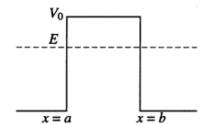
Universal gravitational constant $G = 6.67 \times 10^{-11} \text{ meter}^3/(\text{kilogram} \cdot \text{second}^2)$

Acceleration due to gravity $g = 9.80 \text{ m/s}^2 = 980 \text{ cm/s}^2$

1 atmosphere pressure 1 atm = 1.0×10^5 newton/meter² = 1.0×10^5 pascals (Pa)

1 angstrom 1 $\mathring{A} = 1 \times 10^{-10}$ meter

 $1 \text{ weber/m}^2 = 1 \text{ tesla} = 10^4 \text{ gauss}$


Moments of inertia about center of mass

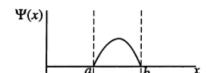
Rod $\frac{1}{12}MQ^2$

Disc $\frac{1}{2}MR^2$

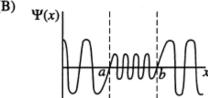
Sphere $\frac{2}{5}MR^2$

- 17. The wave function for a particle constrained to move in one dimension is shown in the graph above $(\Psi = 0 \text{ for } x \le 0 \text{ and } x \ge 5)$. What is the probability that the particle would be found between x = 2 and x = 4?
 - (A) 17/64
 - (B) 25/64
 - (C) 5/8
 - (D) $\sqrt{5/8}$
 - (E) 13/16

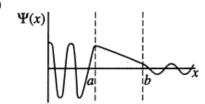
18. Consider a potential of the form

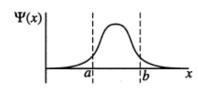

$$V(x) = 0, x \le a$$

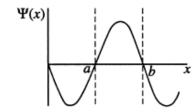
$$V(x) = 0, \ x \le a \\ V(x) = V_0, \ a < x < b \\ V(x) = 0, \ x \ge b$$


$$V(x) = 0, x \ge b$$

as shown in the figure above. Which of the following wave functions is possible for a particle incident from the left with energy $E < V_0$?


(A)


(B)


(C)

(D)

(E)

- 33. A diatomic molecule is initially in the state $\Psi(\Theta, \Phi) = (5Y_1^1 + 3Y_5^1 + 2Y_5^{-1})/(38)^{1/2}$, where Y_{ℓ}^m is a spherical harmonic. If measurements are made of the total angular momentum quantum number ℓ and of the azimuthal angular momentum quantum number m, what is the probability of obtaining the result $\ell = 5$?
 - (A) 36/1444
 - (B) 9/38
 - (C) 13/38
 - (D) 5/(38)1/2
 - (E) 34/38
 - 51. The solution to the Schrödinger equation for a particle bound in a one-dimensional, infinitely deep potential well, indexed by quantum number n, indicates that in the middle of the well the probability density vanishes for
 - (A) the ground state (n = 1) only
 - (B) states of even n (n = 2, 4, ...)
 - (C) states of odd n (n = 1, 3, ...)
 - (D) all states (n = 1, 2, 3...)
 - (E) all states except the ground state
 - 52. At a given instant of time, a rigid rotator is in the state $\psi(\theta, \phi) = \sqrt{3/4\pi} \sin\theta \sin\phi$, where θ is the polar angle relative to the z-axis and ϕ is the azimuthal angle. Measurement will find which of the following possible values of the z-component of the angular momentum, L_z ?
 - (A) 0
 - (B) $\hbar/2$, $-\hbar/2$
 - (C) ħ, -ħ
 - (D) 2 ħ, -2ħ
 - (E) ħ, 0, −ħ

- 76. A Gaussian wave packet travels through free space. Which of the following statements about the wave packet are correct for all such wave packets?
 - The average momentum of the wave packet is zero.
 - II. The width of the wave packet increases with time, as $t \to \infty$.
 - III. The amplitude of the wave packet remains constant with time.
 - IV. The narrower the wave packet is in momentum space, the wider it is in coordinate space.
 - (A) I and III only
 - (B) II and IV only
 - (C) I, II, and IV only
 - (D) II, III, and IV only
 - (E) I, II, III, and IV
- 77. Two ions, 1 and 2, at fixed separation, with spin angular momentum operators S₁ and S₂, have the interaction Hamiltonian H = -J S₁ · S₂, where J > 0.
 The values of S₁² and S₂² are fixed at S₁(S₁ + 1) and S₂(S₂ + 1), respectively. Which of the following is the energy of the ground state of the system?
 (A) 0
 - (B) $-JS_1S_2$
 - (C) $-J[S_1(S_1+1)-S_2(S_2+1)]$
 - (D) $-(J/2)[(S_1 + S_2)(S_1 + S_2 + 1) S_1(S_1 + 1) S_2(S_2 + 1)]$
 - (E) $-\frac{J}{2} \left[\frac{S_1(S_1+1) + S_2(S_2+1)}{(S_1+S_2)(S_1+S_2+1)} \right]$

- 97. A particle of mass m has the wave function $\psi(x, t) = e^{i\omega t} [\alpha \cos(kx) + \beta \sin(kx)]$, where α and β are complex constants and ω and k are real constants. The probability current density is equal to which of the following? (Note: α^* denotes the complex conjugate of α , and $|\alpha|^2 = \alpha^* \alpha$.)

 (A) 0
 - (B) ħk/m
 - (C) $\frac{\hbar k}{2m} (|\alpha|^2 + |\beta|^2)$
 - (D) $\frac{\hbar k}{m} (|\alpha|^2 |\beta|^2)$
 - (E) $\frac{\hbar k}{2mi} (\alpha^* \beta \beta^* \alpha)$
- 98. A particle of mass m is acted on by a harmonic force with potential energy function $V(x) = m\omega^2 x^2/2$ (a one-dimensional simple harmonic oscillator). If there is a wall at x = 0 so that $V = \infty$ for x < 0, then the energy levels are equal to
 - (Α) 0, ħω, 2ħω, ...
 - (B) $0, \frac{\hbar\omega}{2}, \hbar\omega, \dots$
 - (C) $\frac{\hbar\omega}{2}$, $\frac{3\hbar\omega}{2}$, $\frac{5\hbar\omega}{2}$, ...
 - (D) $\frac{3\hbar\omega}{2}$, $\frac{7\hbar\omega}{2}$, $\frac{11\hbar\omega}{2}$, ...
 - (E) $0, \frac{3\hbar\omega}{2}, \frac{5\hbar\omega}{2}, \dots$

- 99. The electronic energy levels of atoms of a certain gas are given by $E_n = E_1 n^2$, where $n = 1, 2, 3, \ldots$ Assume that transitions are allowed between all levels. If one wanted to construct a laser from this gas by pumping the $n = 1 \rightarrow n = 3$ transition, which energy level or levels would have to be metastable?
 - (A) n = 1 only
 - (B) n = 2 only
 - (C) n = 1 and n = 3 only
 - (D) n = 1, n = 2, and n = 3
 - (E) None

- 100. The operator $\hat{a} = \sqrt{\frac{m\omega_0}{2\hbar}}(\hat{x} + i\frac{\hat{p}}{m\omega_0})$, when operating on a harmonic energy eigenstate Ψ_n with energy E_n , produces another energy eigenstate whose energy is $E_n \hbar\omega_0$. Which of the following is true?
 - I. â commutes with the Hamiltonian.
 - II. \hat{a} is a Hermitian operator and therefore an observable.
 - III. The adjoint operator $\hat{a}^{\dagger} \neq \hat{a}$.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I and III only