
1 The disc amplitude

Note: The treatment here follows Zwiebach.

Suppose we have two open strings scattering off each other. This will be a 4-point diagram, since
there are two incoming quanta and two outgoing quanta. We will take the open strings to be in
their ground states, which are tachyons with

m2 = −p2 = −
1

α′
(1)

We will have
p1 + p2 + p3 + p4 = 0 (2)

The interaction will be described by inserting the vertex operators for the tachyons on the boundary
of a disc. For vertex operators

eipiX (3)

the OPE is
eipiX(z)eipjX(z′) ∼ |z − z′|2α′pi·pjei(pi+pj)X + . . . (4)

The general correlation function is

<
∏

i

epiX(zi) >=
∏

i<j

|zi − zj|
2α′pi·pj (5)

We would need to integrate over the locations of the insertions, which we study now.

2 Disc as an upper half plane (UHP)

Let the disc be defined as
|w| < 1 (6)

Consider the analytic map

z = i
1 − w

1 + w
(7)

We can see that this maps the disc to the upper half plane. The boundary of the disc goes to the
real axis. This can be seen by noting that the boundary is

w = eiθ, − π ≤ θ < π (8)

But

i
1 − eiθ

1 + eiθ
= i

e−i θ
2 − ei θ

2

e−i θ
2 − ei θ

2

= i
−2i sin θ

2

2 cos θ
2

= − tan
θ

2
(9)

Thus we get real z, and these real numbers cover the real line (including the point at infinity) once.
Thus the boundary of the disc maps to the boundary of the UHP. Now we check that the interior of
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the disc maps to the interior of the UHP. We need to show that the imaginary part of z is positive.
Let w = x + iy. We have

z = i
(1 − x) − iy

(1 + x) + iy
= i

[(1 − x) − iy][(1 + x) − iy]

(1 + x)2 + y2
= i

(1 − x2 − y2) − 2i(1 − x)y

(1 + x)2 + y2
(10)

Using x2 + y2 < 1, we see that Im(z) > 0, so we are in the UHP.

We now check that the UHP is preserved by fractional linear transformations

z′ =
az + b

cz + d
, ad − bc = 1 (11)

where a, b, c, d are real. Note that the real line goes to the real line. We could have scaled all of
a, b, c, d by a uniform constant, and the transformation would not change. In this way we can have
ab− cd = λ for any λ > 0, but note that we cannot get λ < 0. Now let us check that we remain in
the UHP. Let z = x + iy. We have

z′ =
(ax + b) + iay

(cx + d) + icy
=

[(ax + b) + iay][(cx + d) − icy]

(cx + d)2 + c2y2
(12)

Thus

Im[z′] = y
ad − bc

(cx + d)2 + c2y2
=

y

(cd + d)2 + c2y2
> 0 (13)

so we are in the UHP.

Let us see how variables transform under the fractional linear transformation. We have

dz′ = [
adz

cz + d
−

(az + b)c

(cz + d)2
]dz =

a(cz + d) − c(az + b)

(cz + d)2
dz =

ad − bc

(cz + d)2
dz =

1

(cz + d)2
dz (14)

z′1−z′2 =
az1 + b

cz1 + d
−

az2 + b

cz2 + d
=

(az1 + b)(cz2 + d) − (az2 + b)(cz1 + d)

(cz1 + d)(cz2 + d)
=

(ad − bc)(z1 − z2)

(cz1 + d)(cz2 + d)
=

z1 − z2

(cz1 + d)(cz2 + d)
(15)

3 Writing the amplitude

We can use fractional linear transformations to fix three points to arbitrary values. It is conventional
to fix z1, z3, z4. Then z2 ≡ z will need to be integrated over. We have to decide what measure to
use for z. The goal is to get invariance under fractional linear transformations. It turns out that
the correct measure is

dµ = dz|z1 − z3||z3 − z4||z4 − z1| (16)

This will transform to

dz

|cz + d|2
|z1 − z3|

|(cz1 + d)(cz3 + d)|

|z3 − z4|

|(cz3 + d)(cz4 + d)|

|z4 − z1|

|(cz4 + d)(cz1 + d)|
=

dz

|cz + d|2
|z1 − z3||z3 − z4||z4 − z1|

|(cz1 + d)|2|(cz3 + d)|2|(cz4 + d)|2

(17)
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The actual correlator of vertex operators has the factor

|z − z1|
2α′p2·p1|z − z3|

2α′p2·p3|z − z4|
2α′p2·p4|z1 − z3|

2α′p1·p3|z3 − z4|
2α′p3·p4|z4 − z1|

2α′p4·p1 (18)

This transforms to itself times the multiplicative factor

|(cz + d)|−2α′p2·p1−2α′p2·p3−2α′p2·p4

|(cz1 + d)|−2α′p2·p1−2α′p1·p3−2α′p1·p4

|(cz3 + d)|−2α′p2·p3−2α′p3·p1−2α′p3·p4

|(cz4 + d)|−2α′p2·p4−2α′p4·p3−2α′p4·p3 (19)

Thus the total power of |cz + d| is

−2[1 + α′p2 · (p1 + p3 + p4)] = −2[1 − α′p2 · p2] = −2[1 − α′ 1

α′
] = 0 (20)

and similarly for the other factors. Thus the integral is invariant under fractional linear transfor-
mations.

We now set
z1 = 0, z3 = 1, z4 = ∞ (21)

The integral now simplifies to

∫

dz|z4|
2|z|2α′p2·p1|z − 1|2α′p2·p3|z4|

2α′p2·p4|z4|
2α′p3·p4|z4|

2α′p4·p1 (22)

The power of |z4| again cancels

2[1 + α′p4 · (p1 + p2 + p3)] = 2[1 − α′p4 · p4] = 0 (23)

and we get
∫

dz|z|2α′p2·p1|z − 1|2α′p2·p3 (24)

The variable z lies on the real line between z1 and z3, which gives 0 < z < 1. Thus we have

∫ 1

0
dzz2α′p2·p1(1 − z)2α′p2·p3 (25)

4 Converting to physical variables

Note that

s = −(p1 + p2)
2 = −

2

α′
− 2p1·2 (26)

so that
2α′p1 · p2 = −α′s − 2 = −(α′s + 1) − 1 (27)

Similarly,

t = −(p2 + p3)
2 = −

2

α′
− 2p2·3 (28)
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so that
2α′p2 · p3 = −α′t − 2 = −(α′t + 1) − 1 (29)

We write
α(s) = α′s + 1, α(t) = α′t + 1 (30)

Then the integral becomes
∫ 1

0
dzz−α(s)−1(1 − z)−α(t)−1 (31)

Recall that the Beta function is defined as

B[a, b] =

∫ 1

0
dxxa−1(1 − x)b−1 =

Γ(a)Γ(b)

Γ(a + b)
(32)

Thus the integral equals
Γ(−α(s))Γ(−α(t))

Γ(−α(s) − α(t))
(33)

The Γ function has poles when its argument is zero or a negative integer. Thus there are poles for

α(s) = n, n = 0, 1, . . . (34)

and for
α(t) = n, n = 0, 1, . . . (35)

Thus the poles in the s-channel occur for

α′s + 1 − n, s =
1

α′
(n − 1), n = 0, 1, . . . (36)

We see that these are just the masses of the open string states. The same poles occur in the
t-channel.

5 Closed strings

We can do a similar analysis for closed strings, and the amplitude is called the Virasoro-Shapiro
amplitude.. This time the world sheet is a sphere, and we have 4 points on this sphere. By
conformal invariance, we can again set three points to 0, 1,∞. The last point is z.

The closed string tachyons have

p2 = −m2 =
4

α′
(37)

The fractional linear transformations are now

z′ =
az + b

cz + d
(38)

with all numbers complex. We have

d2z → d2z
1

(cz + d)2(c̄z̄ + d̄)2
= ddz̄

1

|cz + d|4
(39)
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The measure will now be
dµ = d2z|z1 − z3|

2|z3 − z4|
2|z4 − z1|

2 (40)

The amplitude for 4 vertex operators will be

∫

d2z|z1−z3|
2|z3−z4|

2|z4−z1|
2|z−z1|

α′p2·p1|z−z3|
α′p2·p3|z−z4|

α′p2·p4|z1−z3|
α′p1·p3|z3−z4|

α′p3·p4|z4−z1|
α′p4·p1

(41)
For the positions of the operators chosen, we get

∫

d2z|z4|
4|z|4α′p2·p1|z − 1|α

′p2·p3|z4|
α′p2·p4|z4|

α′p3·p4|z4|
α′p4·p1 (42)

The power of z4 cancels, and we get

∫

d2z|z|α
′p2·p1|z − 1|α

′p2·p3 (43)

We have

Γ[A] =

∫ ∞

0
dttA−1e−t (44)

We have
∫ ∞

0
dttA−1e−|µ|2t =

1

|µ|2A

∫ ∞

0
d(t|µ|2)(|µ|2t)A−1e−|µ|2t = |µ|−2AΓ[A] (45)

Thus
1

|µ|2A
=

1

Γ[A]

∫ ∞

0
dttA−1e−|µ|2t (46)

The quantity that we wish to compute is

A =

∫

d2z|z|α
′p2·p1|z − 1|α

′p2·p3 (47)

Now use (46) with

−2A = α′p2 · p1, A = −
1

2
α′p2 · p1 (48)

to get

|z|α
′p2·p1 =

1

Γ[−1
2α′p2 · p1]

∫ ∞

0
dtt−

1
2
α′p2·p1−1e−|z|2t (49)

Similarly,

|z − 1|α
′p2·p3 =

1

Γ[−1
2α′p2 · p3]

∫ ∞

0
dss−

1
2
α′p2·p3−1e−|z−1|2s (50)

Writing z = x + iy, we have

A =
1

Γ[−1
2α′p2 · p1]Γ[−1

2α′p2 · p3]

∫ ∞

−∞

∫ ∞

−∞
dxdy

∫ ∞

0
dt

∫ ∞

0
dst−

1
2
α′p2·p1−1s−

1
2
α′p2·p3−1e−|z|2te−|z−1|2s

(51)
We have

e−|z|2te−|z−1|2s = e−(x2+y2)t−((x−1)2+y2)s = e−se−(t+s)x2+2sxe−(t+s)y2
(52)
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We have
∫ ∞

0
dxe−(t+s)x2+2sx =

√

π

t + s
e

s2

t+s (53)

∫ ∞

0
dye−(t+s)y2

=

√

π

t + s
(54)

Thus we get

A =
1

Γ[−1
2α′p2 · p1]Γ[−1

2α′p2 · p3]

∫ ∞

0
dt

∫ ∞

0
dst−

1
2
α′p2·p1−1s−

1
2
α′p2·p3−1e−s π

t + s
e

s2

t+s (55)

Write
t = au, s = (1 − a)u (56)

Thus
t + s = u (57)

We have
∂t

∂a
= u,

∂t

∂u
= a,

∂s

∂a
= −u,

∂s

∂u
= 1 − a (58)

∂(t, s)

∂(a, u)
= u(1 − a) + au = u (59)

Thus we get

A =
1

Γ[−1
2α′p2 · p1]Γ[−1

2α′p2 · p3]

∫ 1

0
da

∫ ∞

0
duu(au)−

1
2
α′p2·p1−1((1−a)u)−

1
2
α′p2·p3−1e−(1−a)u π

u
e

(1−a)2u2

u

(60)

A =
π

Γ[−1
2α′p2 · p1]Γ[−1

2α′p2 · p3]

∫ 1

0
da

∫ ∞

0
du(a)−

1
2
α′p2·p1−1(1−a)−

1
2
α′p2·p3−1(u)−

1
2
α′p2·p1−

1
2
α′p2·p3−2e−a(1−a)u

(61)
First we do the u integral
∫ ∞

0
du(u)−

1
2
α′p2·p1−

1
2
α′p2·p3−2e−a(1−a)u = Γ[−

1

2
α′p2 · p1 −

1

2
α′p2 · p3 − 1](a(1−a))

1
2
α′p2·p1+

1
2
α′p2·p3+1

(62)
The a integral now is

∫ 1

0
da(a)−

1
2
α′p2·p1−1(1− a)−

1
2
α′p2·p3−1(a(1 − a))

1
2
α′p2·p1+

1
2
α′p2·p3+1 =

∫ 1

0
da(a)

1
2
α′p2·p3(1 − a)

1
2
α′p2·p1

(63)
This gives

∫ 1

0
da(a)

1
2
α′p2·p3(1 − a)

1
2
α′p2·p1 =

Γ[12α′p2 · p3 + 1]Γ[12α′p2 · p1 + 1]

Γ[12α′p2 · p1 + 1
2α′p2 · p3 + 2]

(64)

Thus overall we get

A = π
Γ[−1

2α′p2 · p1 −
1
2α′p2 · p3 − 1]Γ[12α′p2 · p3 + 1]Γ[12α′p2 · p1 + 1]

Γ[−1
2α′p2 · p1]Γ[−1

2α′p2 · p3]Γ[12α′p2 · p1 + 1
2α′p2 · p3 + 2]

(65)

Note that

−
1

2
α′(p2 · p1 + p2 · p3 + 4) = −

1

2
α′(p2 · p1 + p2 · p3 + p2 · p2) =

1

2
α′p2 · p4 (66)
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Thus

Γ[−
1

2
α′p2 · p1 −

1

2
α′p2 · p3 − 1] = Γ[

1

2
α′p2 · p4 + 1] (67)

and

A = π
Γ[12α′p2 · p4 + 1]Γ[12α′p2 · p3 + 1]Γ[12α′p2 · p1 + 1]

Γ[−1
2α′p2 · p1]Γ[−1

2α′p2 · p3]Γ[12α′p2 · p1 + 1
2α′p2 · p3 + 2]

(68)

Let us convert this to physical variables. We have

s = −(p1 + p2)
2 = p2

1 + p2
2 + 2p1 · p2 = −

8

α′
− 2p1 · p2 (69)

Thus

α′p1 · p2 = −
1

2
(α′s + 8) = −

1

2
(α′s + 4) − 2 (70)

Writing

α(s) =
1

4
(α′s + 4) (71)

we have
1

2
α′p1 · p2 + 1 = −α(s) (72)

Thus we get

A = π
Γ[−α(u)]Γ[−α(t)]Γ[−α(s)]

Γ[1 + α(s)]Γ[1 + α(t)]Γ[1 + α(u)]
(73)

The s channel poles are at
α(s) = n, n = 0, 1, 2, . . . (74)

1

4
(α′s + 4) = n, s =

4

α′
(n − 1), n = 0, 1, . . . (75)

which agrees with the masses of the string states.
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