
1 Path integrals

The string worldsheet was 2-dimensional. On this worldsheet we had the variables Xµ(τ, σ). Upon
quantization we have to do a path integral over these variables. We can also regard the theory in
a Hamiltonian language, where Xµ will become local operators.

More general string theories can be made by taking again the 2-d string worldsheet (τ, σ) and then
making some other suitable field theory on this worldsheet. To understand such field theories in
generality, let us review path integrals and their Hamiltonian description.

2 The Ising model

Let us start with a very simple system. Instead of the 2-d worldsheet, just consider a 1-d line,
parametrized by the variable τ . We further assume that this line is discretized to a set of lattice
points k, k = 1, . . . N . Instead of a field variable like Xµ which can equal any real number, we
allow each point lattice point to carry only two possibilities; we call these spin up and spin down.
Note that there are

# = 2N (1)

possible configurations for the spins on the lattice.

To describe the dynamics we have to give the action for any configuration of spins. We will let
the action be local: thus the total action will be the sum of contributions from neighboring pairs
of spins. If both members are up, we will have action A, if both down we will have B, and if one
is up and one down, we will have C. Note that we have taken the action to be symmetric under
reversal of the direction of τ : for this case of one spin up and one down the action does not depend
on which of the spins was up and which was down.

Thus for any given configuration of spins we have an action

S =
N−1
∑

i=1

Si (2)

where Si is the action from the interval between the i and i + 1 lattice sites. The total partition
function of this statistical system is

Z =
∑

conf

e−S (3)

where
∑

conf is the sum over the 2N possible configurations of spins. The question now is: how so
we compute such a partition function?

Let us write the configuration at lattice site i as a 2-component vector. Thus we have

↑=
(

1
0

)

≡ V1 ↓=
(

0
1

)

≡ V2 (4)
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We encode the action from the interval (i, i + 1) into a matrix

M =

(

e−A e−C

e−C e−B

)

(5)

Suppose the state at site i is Va and at site i + 1 is Vb, where a, b = 1, 2. Then the contribution to
e−S from the interval (i, i + 1) is given by

e−S → (Vb)
T MVa (6)

So far we have not learnt much by this formalism. The interesting part comes now. Suppose we
want the contribution from the interval (i, i + 2). The contribution to e−S is now the product of
contributions from two different slices, (i, i + 1) and (i + 1, i + 2). Suppose we have the state 1 at
i, the state 1 at i + 1, and the state 2 at i + 2. Then the contribution to e−S from (i, i + 2) is

e−S → M21M11 (7)

If the middle spin was 2 instead, we would get

e−S → M22M21 (8)

Thus summing over the two possibilities of the middle spin is equivalent to multiplying the two M

matrices: we sum over the index common to these matrices. We see that if the configuration at i

is V i and at i + 2 is V i+2 then we get

e−S = (V i+2)T MMV i (9)

Now consider the entire chain of spins, and its total path integral. There are different kinds of
boundary conditions that we can put at the ends of the chain:

(a) We can specify the spin state at i = 1, i = N by giving vectors

V 1, V N (10)

which specify the value of the spin at these ends. In this case

Z = (V N )T MN−1V 1 (11)

(b) We take ‘free’ boundary conditions at the ends; i.e., the spins at the ends have to be summed
over both possibilities with equal weight, just as we do at all other lattice sites. Then it can be
seen that we should define the vector

VF =

(

1
1

)

(12)

and then
Z = V T

F MN−1VF (13)
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(c) We can join the two ends of our lattice to make a loop with no free ends. Thus we can identify
site N with site 1. There are N − 1 intervals in the loop which contribute to the action and we
have

Z = Tr [MN−1] (14)

Of course in the cases where we do not have a loop we can choose different boundary conditions at
the two ends, and use the appropriate vectors at these ends.

Let us now move to the next step: how do we compute a quantity like (11)? The matrix M

was symmetric because of time reversal symmetry τ → −τ . Thus it can be diagonalized by an
orthogonal transformation

OT MO = D (15)

where OT O = OOT = I and

D =

(

e−λ1 0
0 e−λ2

)

(16)

is a diagonal matrix. Then we can write

Z = V T
N MN−1V − 1 = V T

N OOT MOOT M . . . OT MOOT V1 = V ′T
N DN−1V ′

1 (17)

where

V ′
1 = OT V1 =

(

(V ′
1)1

(V ′
1)2

)

, V ′
N = OT VN =

(

(V ′
N )1

(V ′
N )2

)

(18)

Thus all we have to do is find O for the matrix M . Then we can find the vectors V ′ from the given
vectors V . Then the partition function is given by

Z = (V ′
N )1(V

′
1)1e

−(N−1)λ1 + (V ′
N )2(V

′
1)2e

−(N−1)λ2 (19)

So it does not matter how large N is, we can still find Z with the same amount of effort. The
matrix M is called the ‘transfer matrix’ for the problem.

But one thing we realize from this method of solution is that it is useful to make ‘formal linear
combinations’ of allowed configurations. Thus the spin at i = 1 could be either up or down; there
was no in-between configuration. Thus the only allowed configurations gave the vectors (4). But
we found it useful to make the vector V ′

1 , which had entries which were arbitrary real numbers
in general. This vector is then a linear superposition of configurations, just like we take linear
superpositions of states in quantum mechanics. In fact we have here the Hamiltonian description
of the path integral that we started with. The vectors V ′

1 , V ′
N are the states at the initial and final

time slices, and − log D =

(

λ1 0
0 λ2

)

is the Hamiltonian. In the original basis, the states were

Vn, V1, and − log M was the Hamiltonian.
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3 Some formal relations

Consider the 2-point correlation function of a free scalar field, in D Euclidean dimensions. The
scaling dimension of the field is found by asking that the action have no units. Thus we get

S =
1

2

∫

dDξ∂φ∂φ → LD−2[φ]2 = 1 (20)

which gives

[φ] = L− (D−2)
2 (21)

Thus in 4-d we have φ with units of 1
L

which is units of mass. But in 2-d φ seems to have no units
at all. We will see however that the units of φ in 2-d are slightly ill defined.

If φ has units as above, then we expect that the 2-point function of φ will behave as

< φ(x)φ(0) >=
1

|x|D−2
(22)

In 2-d we see that this is a constant function. This does not look right, since it would imply that
the correlation does not drop with distance at all. More precisely, we can ask that the 2-point
function satisfy the field equation

△x < φ(x)φ(0) >= 0, x 6= 0 (23)

Thus in 2-d we should have
< φ(x)φ(0) >∼ − ln |x| (24)

We can fix the sign in this equation by noting that the correlation function should be positive and
should grow for small distances.

Let us now fix coefficients in this expression. The path integral is

Z =

∫

dφe−
1
2
∂φ∂φ =

∫

dφe
1
2
φ△φ (25)

We can add a source

Z =

∫

dφe
1
2
φ△φ+Jφ (26)

The path integral over the Gaussian will give

Z = e−
1
2
J△−1J (27)

where we have used the general formula for a Gaussian integral

∫

dxe−ax2+bx =

√

π

a
e

b2

4a (28)

The 2-point function is

< φ(x)φ(0) >=
1

Z

δZ

δJ(x)

δZ

δJ(0)
= −△−1(x, 0) (29)
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(The factor of 2 disappears because the first derivative can act on either of the two Js in the
exponent.) Thus

△ < φ(x)φ(0) >= −δ(x) (30)

Let us now find △−1 in 2-d. We write

△ ln r = µδ(0) (31)

and we find µ. Let us integrate both sides over a circular disc of radius R around the origin. The
LHS gives, using the Stokes theorem

∫

d2x△(ln r) =

∫

dl∂r(ln r) =

∫

R

dl
1

R
= 2πR

1

R
= 2π (32)

where
∫

R
dl is the integral over the circular boundary of the disc of radius R. The RHS of (31)

gives µ Thus we have
△(ln r) = 2πδ(0) (33)

Thus from (30) we should have

< φ(x)φ(0) >= − 1

2π
ln |x| (34)

But this cannot be quite right, since x has units of length, and we cannot take its log. Thus there
must be a length scale that appears to make x dimensionless. But in a conformal theory there is
no length scale! Thus we see that the field φ is not a good conformal field at all, and cutoffs used
in the definition of the path integral will play a role in its exact correlation function. We will look
at these cutoffs later, but for now we write the correlation function as

< φ(x)φ(0) >= − 1

2π
ln

|x|
a

(35)

where a has units of length.

In the problem that we have the action is actually

S = T

∫

1

2
∂X∂X =

1

2πα′

∫

1

2
∂X∂X (36)

We can make the dimensionless field

φ =
X√
2πα′ (37)

Then we get the action for φ that we have used above. Thus we will have

< X(x)X(0) >= −α′ ln
|x|
a

(38)

or in units where α′ = 1

< X(x)X(0) >= − ln
|x|
a

(39)
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4 Complex coordinates

We will use the complex coordinates

z = x1 + ix2, z̄ = x1 − ix2 (40)

Then
zz̄ = |x|2 (41)

and

< φ(z)φ(0) >= − 1

4π
ln(zz̄) (42)

5 The operator ∂φ

We can compute different derivatives of φ. In complex coordinates we get

∂z = ∂x1

∂x1

∂z
= ∂x2

∂x2

∂z
(43)

But

x1 =
1

2
(z + z̄), x2 =

1

2i
(z − z̄) (44)

so we get

∂z =
1

2
[∂x1 − i∂x2 ] (45)

Let us compute

< ∂z1φ(z1)∂z2φ(z2) >= − 1

4π
∂z1∂z2 ln[(z1 − z2)(z̄1 − z̄2)] =

1

4π
∂2

z1
ln[(z1 − z2)(z̄1 − z̄2)] (46)

As long as z1 − z2 6= 0 we can write

< ∂zφ(z1)∂zφ(z2) >=
1

4π
∂2

z1
ln[(z1 − z2)] = − 1

4π

1

(z1 − z2)2
(47)

Thus we see that the scaling dimension of ∂zφ is 1, as expected.

In general we just write ∂zφ(z1) or ∂φ(z1) instead of the full expression ∂z1φ(z1). It is assumed
that the derivative is with respect to the argument of the field on which the derivative acts.

6 The operator eiαφ(x)

We will be interested in the operator
eiαφ(x) (48)
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Such operators will appear naturally in string theory. If we think of φ a an operator with scaling
dimension zero, then it would appear that this exponential should also have dimension zero. But
we have seen that φ does not have a well defined dimension, and we will find that the exponential
has a well defined scaling dimension that is not zero.

Let us study the correlator
< eiαφ(x)e−iαφ(0) > (49)

Let us expand each exponential in a power series. We get

<
∑

n

1

n!
(iα)n[φ(x)]n

∑

m

1

m!
(−iα)m[φ(0)]m > (50)

By Wick’s theorem, we should contract away all the scalar fields in pairs. Let us assume that the
operators are normal ordered. So we can contract the operators at one point only with operators
at the other point. To get a complete contraction, we see that we can only have terms with n = m.
We see that there are n! ways to make this contraction, and each gives a contribution

[− 1

2π
ln |x|]n (51)

Thus we find

< eiαφ(x)e−iαφ(0) >=
∑

n

1

n!
α2n[− 1

2π
ln |x|]n = e−α2 1

2π
ln |x| = |x|−α2

2π (52)

Thus the dimension of the operator eiαφ is

∆ =
α2

4π
(53)

7 The operators in string theory

In string theory we will look at operators like

eikX = ei
√

2πα′kφ (54)

The dimension of this operator will be

∆ =
2πα′k2

4π
=

α′k2

2
(55)

In units where α′ = 1 we have

∆ =
k2

2
(56)

This is the total scaling dimension, and if we look at the holomorphic and antiholomorphic parts
separately then we will find

(
k2

4
,
k2

4
) (57)
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8 Vertex operators

The string worldsheet is 2-dimensional. We have to do a path integral over fields Xµ on this surface.
For the moment let us ignore the constraints. Recall that the action was conformally invariant, and
if we insert any operators to make a correlation function then we want this correlation function to
be conformally invariant as well. But where shall we insert the operator? The only covariant way
is to insert it at a point z and then integrate over z. The integration measure will be

d2z = dzdz̄ (58)

This has scaling dimension L2 or (mass)−2. Thus the inserted operator should have mass dimension
2. More precisely, the integral measure has mass dimensions (−1,−1) in z, z̄, and we need the
inserted operator to have mass dimension (1, 1) in z, z̄. Let us see how this can be achieved.

The simplest operators are just the exponential functions eikX . To get ∆ = 1 for z we need

k2

4
= 1 (59)

Since this is positive, we have a spacelike momentum k. This vertex operator therefore corresponds
to a tachyon. We see that

k2 = 4 (60)

just as we had found from our analysis of tachyon state from the analysis of string states.

The next operator that we can make can have the form

∂zX
µeikX (61)

Now the operator ∂z already supplies the mass dimension 1, so we need

k2 = 0 (62)

so we have a massless particle. The same holds for the z̄ side, so the overall operator has the form

∂zX
µ∂̄XνeikX (63)

and we see that we have the right indices to describe a graviton.

9 The transfer matrix for the scalar field

Let us now take the free scalar field in 0 + 1 dimensions. Let the τ direction be on a lattice with
spacing ∆ as above. The action from one slice between two lattice points is

S =
1

2
φ̇2dτ =

1

2
(
φi+1 − φi)

∆
)2∆ =

1

2

(φi+1 − φi)
2

∆
(64)

The state at site i can be any value of φ. Each if these classical possibilities will be denoted by

|φ〉 (65)
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The state at site i + 1 will be similarly given by a value

|φ′〉 (66)

The transfer matrix between these two possibilities will be

e−
1

2∆
(φ′−φ)2 (67)

This is not diagonal, since φ need not equal φ′. But we can make formal linear combinations of φ

|k〉 =
1√
2π

∫

dφeikφ|φ〉 (68)

Between two such vectors, |k〉 at i and |k′〉 at i + 1 we will have for the transfer matrix

Mkk′ =

∫

dφ

∫

dφ′e−ik′φ′

eikφe−
1

2∆
(φ′−φ)2 (69)

But we have

e−ik′φ′

eikφ = e
i(k−k′)(φ+φ′)

2 e
i(k+k′)(φ−φ′)

2 (70)

and

dφdφ′ =
1

2
d(φ − φ′)d(φ + φ′) (71)

Thus we have

Mkk′ =
1

2π

1

2

∫

d(φ − φ′)
∫

d(φ + φ′)e
i(k−k′)(φ+φ′)

2 e
i(k+k′)(φ−φ′)

2 e−
1

2∆
(φ′−φ)2 (72)

We have
∫

d(φ + φ′)e
i(k−k′)(φ+φ′)

2 = 2πδ(
k − k′

2
) = 4πδ(k − k′) (73)

∫

d(φ − φ′)e−
1

2∆
(φ′−φ)2e

i(k+k′)(φ−φ′)
2 =

√
2πe−

∆(k+k′)2

8 (74)

The delta function implies that k = k′ so we can write the above result as
√

2πe−
∆
2

k2
(75)

So overall we find
Mkk′ = (2π)

1
2 δ(k − k′)e−

∆
2

k2
(76)

Now the transfer matrix is diagonal. We also see that

k =
1

i

δ

δφ
= πφ (77)

Thus

k2 = − δ2

δφ2
= φ2

φ (78)

We see that
Mkk′ = (2π)

1
2 δ(k − k′)e−

∆
2

φ2
φ (79)

This gives the Hamiltonian evolution in the quantized theory, with the continuum limit

−∆

2
φ2

φ → 1

2
dτπ2

φ = dτH (80)

with

H =
1

2
π2

φ (81)
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10 Correlator between exponentials and ∂X

We use the field X with correlation function

< X(z)X(z′) = − ln
|z|
a

=
1

2
[ln

z

a
+ ln

z̄

a
] (82)

where we have set α′ = 1.

Let us compute the correlation function

< ∂X(z)eikX (z′) > (83)

We expand the exponential in a power series, getting

< ∂X(z)

∞
∑

m=0

(ik)m

m!
[X(z′)]m > (84)

We have

< ∂X(z)X(z′) >= −∂z
1

2
ln z = − 1

2z
(85)

In the Wick contractions, the ∂X can contract with any of the m terms X(z′), so we get

− 1

2z
(ik)

∞
∑

m=0

(ik)m−1

(m − 1)!
[X(z′)]m−1 = − 1

2z
eikX(z′) (86)

Thus

< ∂X(z)eikX (z′) >= − 1

2z
eikX(z′) (87)

11 The operator product expansion

We have

< ∂X(z)∂X(z′) >= −1

2

1

(z − z′)2
(88)

This is what we get is we want to compute a correlator of just ∂X(z) and ∂X(z′). But suppose
there are other operators in the correlator

< X(z)X(z′)O1(z1) . . . On(zn) > (89)

What can we do with the two operators ∂X now? In general, nothing, since we cannot just contract
them by a Wick contraction and remove them. This is because while there is certainly a term with
such a contraction, there will also be terms where ∂X(z) contracts with an X in some operator Ok

and ∂X(z′) also contracts with an X in some Ok′ . So it would seem that we cannot simplify this
expression in general without knowing something more about the operators Ok.
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But suppose that z is close to z′, in the sense that

|z − z′| ≪ |z − zk| (90)

so the two points with the operators ∂X are much closer to each other than to any of the operators
Ok. In this case we can replaces them by an operator product expansion. This is done as follows.

First we look at the term where the two ∂X operators do Wick contract. This removes them as
operators from the correlator, but gives a contribution

−1

2

1

(z − z′)2
(91)

If z − z′ is small, this will be larger than other contributions where do do not have this Wick
contraction, so in a series expansion it is reasonable that this be the first term. What we do is
write

∂X(z)∂X(z′) = −1

2

1

(z − z′)2
I(z′) + . . . (92)

where I is the identity operator. Inserting the identity operator at any point does not make any
change to the correlator. So thus far in the expansion we have

< X(z)X(z′)O1(z1) . . . On(zn) > = < [−1

2

1

(z − z′)2
I(z′) + . . .]O1(z1) . . . On(zn) >

= −1

2

1

(z − z′)2
< I(z′)O1(z1) . . . On(zn) > + . . .

= −1

2

1

(z − z′)2
< O1(z1) . . . On(zn) > + . . . (93)

Now we have to look at terms where we do not Wick contract these two ∂X operators with each
other. We do not know much about the operators Ok, so we cannot actually say what other
contractions are possible. So we have to leave the two ∂X operators as they are, but we do have
to note that they should not Wick contract between themselves, since we have already taken that
contribution into account. We can define an operator

: ∂X∂X : (94)

where the normal ordering symbol means that we should not contract these two operators among
themselves. But if we are to think of this as a local operator then we have to ask at what point it
sits. Note that one ∂X was at z and one at z′. Since z − z′ is small, we can at leading order put
both ∂X operators at z′. This gives

∂X(z)∂X(z′) = −1

2

1

(z − z′)2
I(z′)+ : ∂X∂ : X(z′) + . . . (95)

Let us see in more detail what is the meaning of putting both operators ∂X at the same point z′.
These operators were going to be used in Wick contractions with X operators in the Ok, at which
points we would just get c-number functions. One operator ∂X is already at z′, so we make no
further changes to its position. The other operator can be written as

∂X(z) = ∂X(z′) + (z − z′)∂2X(z′) +
(z − z′)2

2
∂3X(z′) + . . . (96)
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It can be easily seen that if we insert this expansion in the correlator and use it to compute the
Wick contractions of ∂X(z) then we will get the correct result. Thus our complete operator product
expansion becomes

∂X(z)∂X(z′) = −1

2

1

(z − z′)2
I(z′)+(z−z′) : ∂X∂X : (z′)+ : ∂2X∂X : (z′)+

1

2
(z−z′)2 : ∂3X∂X : (z′)+. . .

(97)
We have to put the normal ordering symbol on all terms after he first to tell us that we should not
Wick contract these operators. Since z−z′ is small, the terms have coefficients that are decreasing.
Thus the first few terms on the RHS would furnish a good approximation if inserted in the correlator
in place of the operators on the LHS. This i called the operator product expansion. In general it
has the form

O(z, z̄)O′(z′, z̄′) = (z − z′)α1(z̄ − z̄′)ᾱ1O1(z
′, z̄′) + (z − z′)α2(z̄ − z̄′)ᾱ2O2 + . . . .. (98)

where α1 < α2 < α3 etc..
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