
1 Fermions

Consider the string world sheet. We have bosons Xµ(σ, τ) on this world sheet. We will now also
put ψµ(σ, τ) on the world sheet. These fermions are spin 1

2 objects on the worldsheet.

In higher dimensions, we can take a local orthonormal frame and spin around in a complete circle.
In 3 space dimensions for example, this changes the fermion as

eθ
1

4
[σ1,σ2] = ei

θ

2
σ3 (1)

Thus with θ = 2π each component of the spinor changes sign. Thus ψ and −ψ define the same
fermion wavefunction.

We will assume the same behavior for the 1+1 case we have now. In the Euclidean case we can
rotate in the 2-d worldsheet and obtain this property immediately.

Now consider what boundary conditions are appropriate for the fermion. Suppose we are on the
cylinder, and we go around σ → σ + 2π. We want to come back to the same configuration, but we
do not know if we should represent this by ψ or −ψ. Thus there are two possibilities

ψ(σ + 2π) = ψ(σ) (Ramond = R) (2)

ψ(σ + 2π) = −ψ(σ) (Neveu− Schwarz = NS) (3)

In the first case we get the modes

ψ =

∞
∑

n=−∞

ψne
inσ (R) (4)

In the second case we get

ψ =
∞
∑

n=−∞

ψn+ 1

2

ei(n+ 1

2
)σ (NS) (5)

2 Zero point energy

For bosons the Hamiltonian is

H =
1

2
ω(a†a+ aa†) = ωa†a+

1

2
ω (6)

For fermions we have

H =
1

2
ω(b†b− bb†) = ωb†b− 1

2
ω (7)

where we have noted that
[a, a†] = 1, [b, b†]+ = 1 (8)

Thus the zero point energy of the bosons gave us

1

2
[1 + 2 + . . .] =

1

2
(− 1

12
) = − 1

24
(9)
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where we have used that

S = 1 + 2 + . . . = − 1

12
(10)

which we had proved earlier. If we have the R sector, we see that the fermions give us

−1

2
(1 + 2 + . . .) =

1

24
(11)

If our theory is supersymmetric on the world sheet, then we will have as many bosons as fermions,
so the total ground state energy is zero in the R sector.

If we have the NS sector then we get

−1

2
(
1

2
+

3

2
+ . . .) (12)

Thus we wish to compute

T =
1

2
+

3

2
+ . . . (13)

Suppose we have regularized this sum just like we did for S. Then we can write

2T = 1 + 3 + . . . (14)

Adding in the even integers can be done by writing

2S = 2 + 4 + . . . (15)

Thus
S = 1 + 2 + 3 + 4 + . . . = 2T + 2S (16)

Thus

T = −1

2
S =

1

24
(17)

If we have supersymmetry on the worldsheet then we have as many bosons and fermions. One
boson and one fermion would give

− 1

24
− 1

48
= − 1

16
(18)

Thus the lowest state in the NS sector will be tachyonic. Let there be d spacetime dimensions
transverse to the string world sheet. Then the vacuum energy of the NS sector will be

− d

16
(19)

The lowest excitation that we can make is 1
2 unit above this level. Suppose we require that this be

massless. Then we have

− d

16
+

1

2
= 0 (20)

which gives
d = 8 (21)

Adding the two dimensions along the string worldsheet, we get the total spacetime dimension as

D = d+ 2 = 10 (22)
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3 The 1-loop partition function

Note: The discussion below follows Polchinski chapter 10.

We have 10 bosons and 10 fermions. Because two directions are fixed along the world sheet, we
have 8 transverse bosons and 8 transverse fermions. We do have the momentum from the remaining
two directions however.

3.1 Bosons

Let us first write the contribution of a boson. Overall our partition function is

Z = V10

∫

d10k

(2π)10
q−

1

24 q̄−
1

24

∑

H⊥

qα
′ k

2

4
+N q̄α

′ k
2

4
+Ñ (23)

where
q = e2πiτ (24)

For one boson, we get
∫

dk

2π
e−α

′πτ2k2

=

√

π

πτ2α′

1

2π
= [4π2τ2α

′]−
1

2 (25)

For the oscillators we have

|q− 1

24

∞
∏

n=1

1

1 − qn
|2 = |η|−2 (26)

Thus overall for one boson we get

L[4π2τ2α
′]−

1

2 |η|−2 (27)

where L is the length of the circle on which the boson is compactified, and we are assuming that
L → ∞ at the end. We also have two zero mode integrals from the directons along the string
worldsheet, so we get from the bosons

ZX = V10[4π
2τ2α

′]−1[|η|−2[4π2τ2α
′]−

1

2 ]8 (28)

3.2 The theta functions

We write
z = e2πiν (29)

The theta functions of interest to us are

θ00(ν, τ) =
∞
∏

m=1

(1 − qm)(1 + zqm− 1

2 )(1 + z−1qm− 1

2 ) (30)
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θ01(ν, τ) =
∞
∏

m=1

(1 − qm)(1 − zqm− 1

2 )(1 − z−1qm− 1

2 ) (31)

θ10 = 2eπiτ/4 cos(πν)

∞
∏

m=1

(1 − qm)(1 + zqm)(1 + z−1qm) (32)

θ11(ν, τ) = −2eπiτ/4 sin(πν)

∞
∏

m=1

(1 − qm)(1 − zqm)(1 − z−1qm) (33)

Focus on the holomorphic fermions. Take 2 fermions at a time. On the σ circle, we can have NS or
R sectors in the path integral. In the time direction, we also have two choices. If we have periodic
fermions in τ , then we must insert (−1)F . If we have antiperiodic fermions, then we insert nothing.
We thus get 4 path integrals, and we can add them in some way to get a modular invariant; this
will define a theory.

3.3 Periodic and antiperiodic fermions

Consider a path integral for fermions on a line τ , which is latticized to 4 points. The path integral
is

∫

dc1dc2dc3dc4e
−i(c1c2+c2c3+c3c4+c4c1) (34)

where we have taken periodicity across the τ circle. There are two contributions:
∫

dc4dc3dc2dc1(−ic1c2)(−ic3c4) = (−1) (35)

and
∫

dc1dc2dc3dc4(−ic2c3)(−ic4c1) = 1 (36)

so that the total Z vanishes. In the Hamiltonian description, we have two states, |0〉, b†|0〉. We
count these with (−1)F , with F = 0 for the first, and F = 1 for the second, to get

Z = tr(−1)F e−τH = 1 − 1 = 0 (37)

If the fermions were antiperiodic, then the path integral does not vanish, and we have

Z = tre−τH (38)

3.4 The fermionic oscillators

In the NS sector we have

ψ =
1√
2π

∑

r=Z+ 1

2

dre
ir(τ+σ) (39)

Thus

[ψ(σ), ψ(σ′)]+ =
1

2π

∑

r,s

ei(r+s)τ [dr, ds]+e
irσ+isσ′ (40)
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Setting
[dr, ds]+ = δr+s,0 (41)

we have

[ψ(σ), ψ(σ′)]+ =
1

2π

∑

r,s

ei(r+s)τ δr+s,0e
irσ+isσ′ =

1

2π

∑

r

eir(σ−σ
′) (42)

= ei
1

2
(σ−σ′) 1

2π

∑

n

ein(σ−σ′) = ei
1

2
(σ−σ′)δ(σ − σ′) = δ(σ − σ′) (43)

Similarly, in the R sector

ψ =
1√
2π

∑

n

dne
in(τ+σ) (44)

with
[dm, dn]+ = δm+n,0 (45)

Note that the oscillators carry another index µ = 0, 1, . . . D − 1. Thus we actually have

[dµm, d
ν
n]+ = ηµνδm+n,0 (46)

The zero modes have the following behavior

[dµ0 , d
ν
0 ]+ = ηµν (47)

This is like the clifford algebra for dirac matrices, and we must find its representation in a similar
way. Group the fermions in pairs. Consider any two fermions, d1, d2, and make the combinations

d+ =
1√
2
(d1 + id2), d− =

1√
2
(d1 − id2) (48)

Thus
[d+, d+]+ = 2(d+)2 = 0, [d−, d−]+ = 2(d−)2 = 0, [d+, d−] = 1 (49)

Thus we can use D+,D− as raising and lowering fermion operators. We can define a vacuum by

d−i |0〉 = 0, i = 1, 2, . . . 5 (50)

and use d+
i as raising operators. Since we can apply each raising operator at most once, we will

get 25 = 32 states. Half of these will have an even number of d+ applications, and half will have
an odd number. These will give the two weyl components of the 32 dimensional spinor in 10-D.

3.5 Partition functions of fermions

(a) First consider the NS sector. Let the fermions be antiperiodic across the τ circle as well, so we
are in NS-NS. Then we should just take a trace with no insertion of (−1)F . For one fermion mode,
we get

(1 + qn−
1

2 ) (51)
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For two fermions, and counting all the modes we get

∞
∏

n=1

(1 + qn−
1

2 )(1 + qn−
1

2 ) (52)

We wish to make this into a theta function. We multiply and divide by

η = q
1

24

∞
∏

n=1

(1 − qn) (53)

We also had a vacuum energy − 1
48 for each fermion. Thus the total vacuum energy contribution

was
q−

1

48 q−
1

48 = q−
1

24 (54)

This cancels against the contribution of the η, and we get

1

η

∞
∏

n=1

(1 − qn)(1 + qn−
1

2 )(1 + qn−
1

2 ) =
θ00(0, τ)

η(τ)
≡ Z00(τ) (55)

Overall we will have 8 transverse fermions, so 4 such pairs of fermions, so we will get the contribution

Z4
00 (56)

(b) Now still take the NS sector on the σ cycle, but take R in the τ direction. Thus we must now
insert (−1)F , which says that for each fermion mode we get

(1 − qn−
1

2 ) (57)

The rest is the same as before, and we get

1

η

∞
∏

n=1

(1 − qn)(1 − qn−
1

2 )(1 − qn−
1

2 ) =
θ01(0, τ)

η(τ)
≡ Z01(τ) (58)

and with 8 fermions we will get
Z4

01 (59)

(c) Now take the R sector in the σ direction, and NS in the τ direction. Thus the vacuum energy is
now zero if we consider one boson and one fermion, but this means that for each fermion we have
q

1

24 . The two fermions give q
1

12 , and we get another q
1

24 from η, so overall we will have

q
1

8 = e2πiτ/8 = eiπτ/4 (60)

Also note that for the R sector we will have two ground states, since we have |0〉 and d+|0〉. Thus
we will get another factor of 2 from these zero modes. The rest of the fermionic oscillators will give

∞
∏

n=1

(1 + qn)(1 + qn) (61)
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So overall we get

1

η
2eiπτ/4

∞
∏

n=1

(1 − qn)(1 + qn)(1 + qn) =
θ10(0, τ)

η(τ)
≡ Z10 (62)

and with 8 fermions we will get
Z4

10 (63)

(d) Now we take R in both directions. We have 2 ground states as before, but with (−1)F these
give 1 − 1 = 0. Thus the result vanishes. we can write this as

(
θ11(0, τ)

η(τ)
)4 ≡ Z4

11 = 0 (64)

since θ11(0, τ) = 0.

4 Combining the sectors

Consider the NS sector along the σ cycle. In this sector the lowest state has energy −1
2 . This is a

tachyon. The next level is obtained by applying ψi
− 1

2

, so it is at level zero. Thus these two states

differ by a half integer.

Recall that for string states we must have level matching between the left and right movers

L0 = L̄0 (65)

If we kept all states on the left, and all states on the right, then we will get cases where from the
oscillator levels we would get Loscillator0 − L̃oscillator0 is a half integer. The difference needs to be
made up from the unequal pL, pR. But recall that for noncompact directions, pL = pR, and for
compact directions

pL =
2πnp
L

− TnwL, pR =
2πnp
L

+ TnwL (66)

Thus

p2
L − p2

R = 4(2π)
1

2πα′
npnw =

4

α′npnw
(67)

We have
p2
L + 8πTNL = p2

R + 8πTNR (68)

NL −NR =
1

8πT
(p2
L − p2

R) =
2πα′

8π

4

α′
npnw = npnw (69)

which is an integer. Thus we cannot have arbitrary matches of left and right oscillator levels since
half integer differences are not allowed for NL −NR.

Thus we must separate out the odd and even levels. Note that only the fermion has half integer
modings. Suppose we say that each time we apply a fermion we change the fermion number by
unity. Let the vacuum of the NS sector have fermion number 1. The fermion number of defined
only mod 2. The next level above the vacuum will be

ψi
− 1

2

|0〉NS (70)
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with m2 = 0. For the open string we have just one sector, so we see that we get 8 massless quanta.
In 10-D, these give the physical degrees of freedom of a photon. We might be confined to a smaller
dimension by having the ends of the open string lie on a D-brane. Suppose we have a p-brane.
Then the directions i normal to the brane will give transverse vibrations of the brane, while those
along the brane will give a gauge field. Thus we learn that D-branes can vibrate, and that they
carry a gauge field on their worldvolume.

Returning to the string, we can separate the off and even levels by using the projection operators

P± =
1

2
(1 ± (−1)F ) (71)

What states should we keep? The bosonic states of the string will come from the NS-NS and RR
sectors. The fermions will come from the RR sectors. The RR sector has integer level states. To
match onto the other sector, we will have to keep the integer level states from the NS sector. Thus
we discard the odd level states by using the projection operator

1

2
(1 − (−1)F ) (72)

In particular this removes the tachyon from the spectrum. It also tells us that we should combine
the first two terms in the path integral (a) and (b) as (a)-(b).

In the R sector, we keep one of the two chiralities of the fermion. Each time we apply a d+
i , we go

from odd to even fermion number, but we also change chiralities, So if we are to keep even or odd
fermion number, then we have to keep one chirality of the spinor from the ground states. For the
left and right sectors, we can either keep the same chirality or opposite chiralities, In the first case
we get IIB string theory, and in the second case we get IIA string theory. Thus we should use

1

2
(1 ± (−1)F ) (73)

in the R sector as well.

There is one last sign that we must understand. In field theory, if we have a fermion loop, then we
have to include an extra minus sign. We do this by assigning one sector – the R sector - a minus
sign. Then for spacetime bosons which are NSNS or RR there is no sign, while for NSR and RNS
we will have a minus sign.

Thus overall we see that we must write

1

2
[Z4

00 − Z4
01 − Z4

10 ∓ Z4
11] (74)

The last term is zero, and the first three vanish because of the Jacobi abstruse identity

θ4
00 − θ4

01 − θ4
10 (75)

This vanishing tells us that we have no vacuum energy for the superstring in flat space.
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5 Excitations of a D-brane

We have seen that an open string can end on a D-brane. An open string has only one sector, not
L R sectors. The NS sector will have a GSO projection, and so the tachyon state will be removed.
The Next level is made from

ψi
− 1

2

|p〉 (76)

We have

m2 = −p2 =
1

α′
(N − 1

2
) = 0 (77)

so we have massless excitations. Thus we have 8 transverse massless modes. The directions along
the brane give a gauge field Aa, while those normal to the D-brane give transverse vibrations.

The R sector gives a spacetime fermion, which gives 8 superpartners of the bosonic degrees of
freedom. We have a 16 comonent spinor to start with, but the equation of motion cuts these down
by half to 8.

6 Gauge fields

Now consider the closed string. From the bosonic excitations, NSNS sector, we have

ψi
− 1

2

ψ̄
j

− 1

2

|0〉 (78)

The transverse traceless part gives a graviton, the antisymmetric part gives the Bij, and the trace
gives the dilaton.

In the RR sector we have
|0〉α|0〉β (79)

for IIB, and
|0〉α|0〉β̇ (80)

for IIA.

We can classify these states by inserting gamma matrices and making linear combinations. For IIB
we have

C0 : |0〉α|0〉α (81)

C
µν
2 : |0〉α[γµγν ]αβ|0〉β (82)

etc.

For IIA we have
C
µ
1 : |0〉αγαβ̇|0〉β̇ (83)

C
µνλ
3 : |0〉α[γµγνγλ]αβ̇|0〉

β̇ (84)

etc. This gives the RR fields for the theory.
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The NSNS Bµν field is produced by the elementary string, but the RR fields are produced by
D-branes.

Closed string theory is ‘complete’ in the sense that all the fundamental particle states are such that
they give all the background fields that the string can propagate in.

7 T-duality

The oscillator expansion of the bosonic field Xµ was

Xµ(τ, σ) = [
1

2
x
µ
0 + α′p

µ
L(τ + σ) + i

√

α′

2

∑

n

αn

n
ein(τ+σ)]

= [
1

2
x
µ
0 + α′p

µ
R(τ − σ) + i

√

α′

2

∑

n

ᾱn

n
ein(τ−σ)] (85)

We can write this as
Xµ = Xµ(ξ+) +Xµ(ξ−) (86)

Suppose we consider
X ′µ = Xµ(ξ+) −Xµ(ξ−) (87)

This will also be a solution to the equation of motion. What is the significance of this new solution?

Suppose we perform the following change of variables on the world sheet

∂aX
′ = ǫab∂

bX (88)

Then
∂τX

′ = ∂σX (89)

∂σX
′ = ∂τX (90)

where we have used that τ has negative signature, and ǫτσ = 1. Thus

(∂τ + ∂σ)X
′ = (∂τ + ∂σ)X (91)

(∂τ − ∂σ)X
′ = −(∂τ − ∂σ)X (92)

and we achieve the change mentioned above.

7.1 Open strings

First let us see the effect of the change X → X ′ on open strings. Suppose the endpoint of the open
string has N boundary condition

∂σX(σ = 0) = 0 (93)

This gives
∂τX

′(σ = 0) = 0 (94)
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which gives
X ′(σ = 0) = x0 = constant (95)

with a similar behavior at σ = π. Thus we get fixed endpoints, which is a D boundary condition.
Thus under this change X → X ′ we go from N to D boundary conditions and vice versa.

7.2 Closed strings

We had
Xµ = x

µ
0 + α′pµτ + wµσ + oscillators (96)

with
pµ = p

µ
L + p

µ
R (97)

wµ = α′(pµL − p
µ
R) (98)

Under the change Xµ → X ′µ we get

p′µ = p
µ
L − p

µ
R =

1

α′
wµ (99)

w′µ = α′(pµL + p
µ
R) = α′pµ (100)

The old winding implied a distance between endpoints

L ≡ 2πR = 2πwµ = 2πα′(pµL − p
µ
R) (101)

The new momentum must be correctly quantized

p′µ =
1

α′
wµ =

2π

L′
=

1

R′
(102)

Thus
R

α′
=

1

R′
(103)

or

R′ =
α′

R
(104)

This is the basic T-duality relation which relates large circles to small circles, while interchanging
winding and momentum.

8 Action of T-duality on fermions

Let X9 be the direction that is T-dualized. Then for the right movers we have taken

X ′9
R = −X9

R (105)

To preserve supersymmetry, we must also take

ψ′9
R = −ψ9

R (106)
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This means that in the R sector, when we make the combinations ψ8
R ± iψ9

R, we will have

ψ′8
R ± iψ′9

R = ψ8
R ∓ iψ9

R (107)

Thus the creation and annihilation gamma matrices have been interchanged. Thus the vacuum has
been changed from 0〉 to Γ+

(5)|0〉. This implies a change of chirality. Thus the right vacuum has
switched chirality, while the left vacuum has remained unchanged. Thus we go from IIB to IIA and
vice versa.

9 The Weyl-Petersen measure

We will show that the measure
d2τ

τ2
2

(108)

is modular invariant. We have

τ ′ = −1

τ
(109)

Thus

τ ′1 + iτ ′2 = − 1

τ1 + iτ2
= −τ1 − iτ2

τ2
1 + τ2

2

≡ −τ1 − iτ2

Q
(110)

Thus
τ ′1 = −τ1

Q
(111)

τ ′2 =
τ2

Q
(112)

Thus
∂τ ′1
∂τ1

= − 1

Q
+

2τ2
1

Q2
,

∂τ ′1
∂τ2

= −2τ1τ2
Q2

(113)

∂τ ′2
∂τ ′1

= −2τ1τ2
Q2

,
∂τ ′2
∂τ2

=
1

Q
− 2τ2

2

Q2
(114)

We find that
∂(τ ′1, τ

′
2)

∂(τ1, τ2)
=

1

Q2
(115)

Thus
dτ ′1dτ

′
2

τ ′22
=
dτ1dτ2

τ2
2

(116)

10 The overall partition function

The overall partition function will have

Z =

∫

d2τ

τ2
V10[4π

2τ2α
′]−1[|η|−2[4π2τ2α

′]−
1

2 ]8ZψZ
∗
ψ (117)
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11 Symmetries of the IIb string

We look at the perturbative symmetries, which come from symmetries of the world sheet action.
We have

Ω, (−1)FL , (−1)FR (118)

Each of these squares to unity. But

Ω(−1)FLΩ = (−1)FR (119)

These make an 8 parameter group

1,Ω, (−1)FL , (−1)FR ,Ω(−1)FL ,Ω(−1)FR , (−1)FL(−1)FR ,Ω(−1)FL(−1)FR (120)

where we can either apply or not apply each of the three elements. these map to D4, the dihedral
group with 4 elements, which are the symmetries of the square. These symmetries are

1, Rx, Ry, RxRy, S, S
3, RxS,RyS (121)

where Rx is reflection in the x axis, etc, and S is rotation by a right angle. Note that RxRy = S2,
and we can check that SRxS = Rx.

We can make the map
Ω = Rx, Ω(−1)FL = S (122)

so that
(−1)FL = RxS (123)

Note that
(RxS)2 = RxSRxS = RxRx = 1 (124)

12 Nonperturbative symmetries

The IIB theory also has a SL(2, Z) nonperturbative symmetry

M =

(

a b

c d

)

, ad− bc = 1 (125)

Define
λ = C0 + ie−φ (126)

The theory has two 2-forms
Bij, Cij (127)

and a 4-form
Cijkl (128)

Under this symmetry we have

λ′ =
aλ+ b

cλ+ d
(129)

(

B′
ij

C ′
ij

)

= M−1T

(

Bij
Cij

)

(130)

C ′
ijkl = Cijkl (131)
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13 Relation between the perturbative and nonperturbative sym-

metries

13.1 The element R

Consider the element of SL(2, Z)
R = −I (132)

Then Bij, Cij change sign, while λ,Cijkl remain fixed. This is in fact the behavior of (−1)FLΩ.
Under Ω,

gij , φ, Cij (133)

are fixed, while
C0, Bij , Cijkl (134)

change sign. To see this, note that for the NSNS fields, we interchange left and right movers, while
for the RR fields, we interchange the two spinors coming from left and right. In C0, we have the
contraction

ηαβψ
α
Lψ

β
R (135)

where η is antisymmetric. Thus C0 is odd. For Cij we get an extra negative sign from the
permutation of order of the two gamma matrices, while in Cijkl the reversal of order is actually an
even permutation so because of η it is odd.

Under (−1)FL , the NS sector is unchanged, while the R sector changes sign. Thus RR states are
odd, and all C fields change sign. Thus with (−1)FLΩ we find that

Bij , Cij (136)

change sign, while the other fields are fixed. Thus this is R.

13.2 The element S

Consider the SL(2, Z) transformation
S = iσ2 (137)

Then we have
S(−1)FLS−1 = Ω (138)

To check this, note that S changes Bij to Cij , which changes sign under (−1)FL , and then we
change back to Bij . Thus Bij changes sign, which is a property of Ω. Similarly we can check the
other elements.
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