
1 Rotation around an axis

The simplest case of rotation is ‘rotation about an axis’. Imagine a body, through which we have
drilled a hole and passed a frictionless rod. This rod is fixed; let it point along the z direction. The
body can rotate around the z axis. This rotation will be described by an angular velocity ω. Any
point on the body will rotate in a circle around the z axis. If the distance of the point from the z

axis is ρ, then the velocity of the point will be

v = ωρ (1)

Let the body be made up of point masses mi with

M =
∑

i

mi (2)

The angular momentum about the z axis of the point mass mi is

Li = miρivi = miρ
2

i ω (3)

and the total angular momentum is

L = [
∑

i

miρ
2

i ]ω ≡ Iω (4)

The quantity

I ≡
∑

i

miρ
2

i (5)

is called the moment of inertia of the body around this axis of rotation. The kinetic energy of the
body is

T =
∑

i

1

2
miv

2

i =
1

2
[
∑

i

miρ
2

i ]ω
2 =

1

2
Iω2 (6)

If there is a torque τ applied to the body around the z-axis, then we will have

τ =
dL

dt
(7)

1.1 Rotation around a point

Now let us assume that a point O on the body is fixed, but the body can rotate in any direction
around this point. The angular velocity is now a vector. We can describe this vector by giving its
components in any frame; for example fixing a standard orthonormal frame in space we can write

~ω = {ωx, ωy, ωz} (8)

Consider the point mass mi. Let its position from the origin O be given by the vector ~ri. The
velocity of the mass is

~v = ~ω × ~r (9)
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The total angular momentum will be

~L =
∑

i

mi~ri × vi =
∑

i

mi~ri × (~ω × ~ri) =
∑

i

mi[(ri)
2 − (ri · ω)~ri] (10)

We can write this in components. Let a = 1, 2, 3 denote the three components of a vector Va. Then
we have

La =
∑

b

Iabωb (11)

where
Iab =

∑

i

mi[(ri)
2δab − riarib] (12)

More explicitly,

Ixx =
∑

i

mi(y
2

i + z2

i )

Iyy =
∑

i

mi(z
2

i + x2

i )

Izz =
∑

i

mi(x
2

i + y2

i )

Ixy = −
∑

i

mixiyi

Iyz = −
∑

i

miyixi

Izx = −
∑

i

mizixi

(13)

We also write
~L = I · ~ω (14)

where we note that I is a matrix (which happens to be symmetric), and ~ω, ~L are vectors.

The kinetic energy is

T =
1

2

∑

i

miv
2

i =
1

2

∑

i

mi~vi · (~ω × ~ri)

=
1

2

∑

i

mi~ω · (~ri × ~vi)

=
1

2
~ω ·

∑

i

mi(~ri × ~vi)

=
1

2
~ω · ~L (15)

If there is no torque on the body (i.e. ~τ = 0) then ~L is constant

d~L

dt
= 0 (16)
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But this does not mean that ~ω is constant. So we have an interesting class of rotations to study:
torque free rotations.

Before we proceed, we note a complication. The way we have defined the matrix I, we see that
its components will change with time. This will happen because as the body rotates, the location
~ri of each mass point mi will change, and these locations go into determining I. Computing I is
hard, since we have to sum over all the masses, and if we have to do a fresh computation at each
point time, then things will become quite impossible. So we adopt a different strategy: we choose
a set of orthonormal axes that are fixed in the body; these will be called body-fixed axes. As the
body rotates, the components of I will not change in this frame. We get a second advantage; we
can choose this orthonormal frame fixed to the body in such a way that I becomes very simple.
Note that I is a symmetric matrix, so it can be diagonalized by an orthonormal transformation.
This means that we can choose the body-fixed axes in such a way that we will have

I =





I1 0 0
0 I2 0
0 0 I3



 (17)

The quantities I1, I2, I3 are called the principal moments of inertia. The disadvantage of using
body-fixed axes of course is that these axes will rotate with time, so even after we have solved
the problem in the body-fixed axes we will have an additional step to do: we will have to find the
orientation of the body with respect to the space-fixed axes.

Let us label the body-fixed axes as 1, 2, 3, to distinguish them from the space-fixed axes which we
have called x, y, z. Then using the body-fixed frame, we have

L1 = I1ω1, L2 = I2ω2, L3 = I3ω3 (18)

The kinetic energy is

T =
1

2
[I1ω

2

1
+ I2ω

2

2
+ I3ω

2

3
] (19)

The relation between space-fixed and body-fixed axes is given as follows. For any vector ~V (t) we
have

(
dV

dt
)s = (

dV

dt
)b + ~ω × ~V (20)

For ~τ = 0 we thus have

0 = (
d~L

dt
)s = (

d~L

dt
)b + ω × ~L (21)

In components, we find for instance

d

dt
(I1ω1) + (ω2L3 − ω3L2) = 0 (22)

which is
I1ω̇1 + (I3 − I2)ω2ω3 = 0 (23)

Overall we get 3 equations for 3 unknowns ω1, ω2, ω3

I1ω̇1 + (I3 − I2)ω2ω3 = 0

I2ω̇2 + (I1 − I3)ω3ω1 = 0

I3ω̇3 + (I2 − I1)ω1ω2 = 0 (24)
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1.2 The case I1 = I2 = I3

Suppose that
I1 = I2 = I3 ≡ I (25)

This is the simplest possibility. Note that now we have

~L = I~ω (26)

In the absence of torques, ~L is constant, and we see that ~ω will also be constant for the present
case. The body therefore keeps turning at a fixed rate around a fixed axis, with the rate of turning
and the direction of the axis being determined by the initial conditions. This motion is therefore
rather trivial.

1.3 I1 = I2 6= I3

Let
I1 = I2 6= I3 (27)

Now things will be more interesting, but still simpler than the general case where all the principal
moments of inertia are different. Such bodies are called ‘symmetric bodies’.

Now the torque free equations become

I1ω̇1 + (I3 − I1)ω2ω3 = 0

I1ω̇2 + (I1 − I3)ω3ω1 = 0

I3ω̇3 = 0 (28)

From the last equation we see that
ω3 = constant (29)

From the first two equations we then get

ω̇1 + [(
I3 − I1

I1

)ω3]ω2 = 0

ω̇2 − [(
I3 − I1

I1

)ω3]ω1 = 0 (30)

so we see that ω1, ω2 describe a circle with angular frequency

Ω = [(
I3 − I1

I1

)ω3] (31)

The radius of the circle is fixed, so we see that ω2

1
+ ω2

2
is constant. This could also have been seen

from the fact that the kinetic energy T must be constant

T =
1

2
[I2(ω

2

1
+ ω2

2
) + I3ω

2

3
] (32)

(Recall that ω3 is constant.) In particular we see that the magnitude of ω is constant

|~ω|2 = (ω2

1 + ω2

2 + ω2

3) = constant (33)
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Since ω3 is constant, we see that the angle between ~ω and the body axis ‘3’ is fixed; this angle is
called αb. The vector ~ω will therefore describe a cone around the body axis ‘3’; this is called the
body cone.

The vector ~L is fixed in space since ~τ = 0. Note that

~L · ~ω = L1ω1 + L2ω2 + L3ω3 = I1(ω
2

1 + I2ω
2

2) + I3ω
2

3 = constant (34)

Given that ~L and |~ω are constant, we find that the angle between ~L and ~ω is constant. Thus ~ω will
describe a cone around ~L; this is called the ‘space cone’ and the angle between ~L and ~ω is called
αs.

The next thing we observe is that ~L, ~ω and the ‘3’ axis of the body all lie in one plane. To see this,
suppose that any instant the body axes are set up so that

~ω = ω11̂ + ω33̂ (35)

i.e., there is no component ω2. We see that ~ω and the ‘3’ axis of the body define the 1 − 3 plane.
But now we observe that

~L = I1ω11̂ + I3ω33̂ (36)

so it also lies on the 1 − 3 plane.

Note that if I3 > I1 then ~L will lie between ~ω and the ‘3’ axis, while if I3 < I1 then ~L will lie
outside the angle made by ~ω and the ‘3’ axis.

The last thing that we need to know is that the body cone rolls on the space cone ‘without slipping’.
This follows because at any instant of time the points that lie on the line through ~ω are stationary.
But this line is just the line of contact between the two cones.

Let us use this fact to find the rate at which ~ω precesses in space. To do this, imagine marking
the point on the body which lies at the tip of the vector ~ω at t = 0. At a slightly later time dt

a different point on the body will lie at the tip of ω. We ask how the distance ds between these
points changes with t. The answer is

ds

dt
= Ω

√

ω2

1
+ ω2

2
(37)

We now ask how far the tip of ~ω has travelled on the space cone. This distance should equal the
distance ds, so we will have

ds

dt
= Ωs

√

ω2 −
(~ω · ~L)2

L2

= Ωs

√

[(ω2

1
+ ω2

2
) + ω2

3
] −

[I1(ω
2

1
+ ω2

2
) + I3ω

2

3
]2

I2

1
(ω2

1
+ ω2

2
) + I2

3
ω2

3

= Ωs(I3 − I1)

√

(ω2

1
+ ω2

2
)ω3

√

I2

1
(ω2

1
+ ω2

2
) + I2

3
ω2

3

(38)

We thus get

Ωs = Ω

√

I2

1
(ω2

1
+ ω2

2
) + I2

3
ω2

3

(I3 − I1)ω3

(39)
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Note that if
ω2

1
+ ω2

2
<< ω2

3
(40)

then we get

Ωs = Ω
I3

I1

(41)

6


