
1 Quantizing the open string

1.1 The action

The Polyakov action is

S = −T
∫

d2ξ
√−g1

2
∂aX

µ∂bXµg
ab (1)

In the gauge
gab = ηab (2)

we get

S = T

∫

dτdσ
1

2
[∂τX

µ∂τXµ − ∂σX
µ∂σXµ] (3)

We will let the range of σ be
0 ≤ σ < π (4)

1.2 Different boundary conditions

Neumann boundary conditions (N) correspond to Xµ having a vanishing derivative

∂Xµ

∂σ
= 0 (5)

Dirichlet boundary conditions (D) correspond to Xµ being fixed

Xµ = xµ
0 (6)

Let us consider some simple cases:

(a) NN boundary conditions:

We can expand the coordinates as

Xµ =

∞
∑

n=0

fn(τ) cosnσ (7)

We see that

σ = 0 :
d

dσ
cosnσ = −n sinnσ = 0 (8)

σ = π :
d

dσ
cosnσ = −n sinnσ = 0 (9)

(b) DD boundary conditions:
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Suppose that both endpoints of the string are at Xµ = 0. We can expand the coordinates as

Xµ =

∞
∑

n=0

fn(τ) sinnσ (10)

We see that
σ = 0 : Xµ ∼ sinnσ = 0 (11)

σ = π : Xµ ∼ sinnσ = 0 (12)

If Xµ is not zero at both ends, then we write

Xµ = aµ + bµσ +

∞
∑

n=0

fn(τ) sinnσ (13)

where aµ, bµ are not variables but constants which are determined to give the two endpoints of the
open string.

(c) ND boundary conditions:

We can expand the coordinates as

Xµ =

∞
∑

n=0

fn(τ) cos(n+
1

2
)σ (14)

We see that

σ = 0 :
d

dσ
cos(n +

1

2
)σ = −(n+

1

2
) sin(n+

1

2
)σ = 0 (15)

σ = π : Xµ ∼ cos(n+
1

2
)σ = 0 (16)

Here we assumed that Xµ = 0 at the endpoint with Dirichlet boundary condition. If this is not
the case we write

Xµ = aµ +

∞
∑

n=0

fn(τ) cos(n+
1

2
)σ (17)

where aµ is a constant vector and not a variable.

(d) DN boundary conditions:

We can expand the coordinates as

Xµ =
∞
∑

n=0

fn(τ) sin(n+
1

2
)σ (18)

We see that

σ = 0 : Xµ ∼ cos(n +
1

2
)σ = 0 (19)

σ = π :
d

dσ
cos(n+

1

2
)σ = −(n+

1

2
) sin(n+

1

2
)σ = 0 (20)
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Here we assumed that Xµ = 0 at the endpoint with Dirichlet boundary condition. If this is not
the case we write

Xµ = aµ +

∞
∑

n=0

fn(τ) sin(n+
1

2
)σ (21)

where aµ is a constant vector and not a variable.

2 Expanding in oscillators

Let us take the case of NN boundary conditions. Let us make normalized modes out of the spatial
functions. We have

∫ π

0
dσ = π (22)

∫ π

0
dσ cos2 nσ =

π

2
(n > 0) (23)

Thus the normalized spatial modes are

n = 0 :
1√
π

(24)

n > 0 :

√

2

π
cosnσ (25)

Thus expand the coordinates as

Xµ(τ, σ) = f0(τ)
1√
π

+
∑

n>0

fn(τ)

√

2

π
cosnσ (26)

Put this in the action. Then we get

S = T [
1

2
(ḟ0)

2 +
∑

n>0

1

2
(ḟ2

n − n2f2
n)] (27)

Thus the variable
qµ ≡

√
Tf0 (28)

behaves as a free particle variable with Lagrangian

1

2
q̇2 (29)

while the variables
qµ
n =

√
Tfn, n > 0 (30)

behave as harmonic oscillators with Lagrangian

1

2
[(q̇µ

n)2 − (qµ
n)2] (31)

The oscillators have angular frequency
ω = n (32)
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Thus let us recall how a harmonic oscillator is quantized. We have

a =
1√
2
(
√
ωx+ i

p√
ω

), a† =
1√
2
(
√
ωx− i

p√
ω

) (33)

Then using [x, p] = i, we get
[a, a†] = 1 (34)

Note that

x =
1√
2ω

(a+ a†) (35)

In the Heisenberg picture of evolution we write

x̂ =
1√
2ω

(âe−iωτ + â†eiωτ ) (36)

Returning to our system, we see that we should write for n > 0

qµ
n =

1√
2n

(âµe−inτ + âµ†einτ ) (37)

In the expansion of the xµ these nonzero modes will therefore give

Xµ ⇒
∑

n>0

√

2

π
cosnσ

1√
T

1√
2n

(aµ
ne

−inτ + aµ†
n e

inτ ) (38)

This gives

Xµ ⇒
∑

n>0

√
2α′

1√
n

(aµ
ne

−inτ + aµ†
n e

inτ ) (39)

Now define
αµ

n = −i
√
naµ

n, n > 0 (40)

αµ
−n = i

√
naµ†

n , n > 0 (41)

Then we will get
[αn, αm] = nδn+m,0 (42)

and the expansion becomes

Xµ ⇒ i
∑

n 6=0

√
2α′ cosnσ

αµ
n

n
e−inτ (43)

We still have to tackle the zero mode. We write it in a way that will allow us to add αµ
0 to the

other αµ
n

Xµ = xµ
0 +

√
2α′αµ

0τ (44)

Recall that Xµ = f0/
√
π, and qµ =

√
Tf0. Thus

Xµ ⇒ 1√
T
√
π

(qµ) (45)

Let us expand the zero mode qµ

Xµ ⇒ 1√
T
√
π

(Qµ + Πµ
q τ) (46)
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We will write

xµ
0 =

qµ
0√
T
√
π

=
√

2α′qµ
0 (47)

Since [Qµ,Πν ] = iηµν , and we want to get

[xµ
0 , p

ν ] = ηµν (48)

we see that we must take

pµ =
Πµ

2α′
=

αµ
0√

2α′
(49)

The full mode expansion for the open string therefore becomes

Xµ = xµ
0 +

√
2α′αµ

0τ +
∑

n 6=0

√
2α′ cosnσ

αµ
n

n
e−inτ (50)

where
αµ

0 =
√

2α′pµ (51)

3 The Virasoro constraints

The conditions are
∂τX

µ∂τXµ − ∂σX
µ∂σXµ = 0 (52)

This gives

0 =
∑

m,n

αµ
mαµ,n(sinnσ sinmσ − cosnσ cosmσ)ei(n−m)τ =

∑

m,n

αµ
mαµ,n cos(n−m)σei(n−m)τ (53)

Thus for all fourier modes of the constraint to vanish we need

Ln =
1

2
αµ

mαµ,n−m = 0 (54)

The L0 constraint again will be
(L0 − 1)|ψ〉 = 0 (55)

We have

L0 =
1

2
α2

0 +
∑

n>0

α−nαn = α′p2 +
∑

n>0

α−nαn (56)

Thus we find that the mass of a state is given by

m2 = −p2 =
1

α′
(N − 1) (57)

where N is the level of the state.

The lowest mode is therefore a tachyon with

N = 0, m2 = − 1

α′
(58)
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The next set of excitations are massless

N = 1, m2 = 0 (59)

and give the massless photon. The next level gives

N = 2, m2 =
1

α′
(60)

We can gauge away the C0i which kills the Di, as we show below. D0 is determined by the Cµν .
The Cµν are symmetric with one condition on them, so we have

(D − 1)D

2
− 1 =

(D − 2)(D − 1)

2
(61)

states.

4 Gauging away states

Let us now check that we can indeed gauge away the states claimed above. We had derived the
physical state constraints at level 2 in the closed string case, so let us work with the closed string
for the moment; the analysis is essentially the same for open strings.

To show that C0i can be gauged away, consider the states

L−1|λ〉 (62)

where |λ〉 is a state at level one
|λ〉 = Fµα

µ
−1|0〉 (63)

The relevant part of L−1 is
L−1 = α−1α0 + α−2α1 + . . . (64)

We get

L−1|λ〉 = (α−1α0 + α−2α1)Fµα
µ
−1|0〉 =

pν√
2
Fµα

ν
−1α

µ
−1|0〉 + Fµα

µ
−2|0〉 (65)

In the frame where we have pµ = (2, 0, . . . 0) we see that we can get any value for C0µ by choosing
Fµ appropriately. We automatically get a corresponding Dµ, with

Dµ =
1√
2
(−2)C0µ = −

√
2C0µ (66)

Note that this is exactly one of the conditions satisfied by Cµν and Dµ for physical states.

But while we can make states like (63) which are orthogonal to all physical states, we are looking
at present for such states which are also physical states; only then will they be pure gauge modes.
Thus we should check if (63)satisfies the physical state conditions. First we should check if

0 = L1L−1|λ〉 = 2L0|λ〉 + L−1L1|λ〉 (67)
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Note that
L0|λ〉 = 0 (68)

since L0 = 1 on the final state that we construct. We need to ensure that

0 = L1|λ〉 = α0α1Fµα
µ
−1|0〉 =

pµ

√
2
Fµ (69)

Thus in our rest frame we need that
F 0 = 0 (70)

We must also check that

0 = L2L−1|λ〉 = 3L1|λ〉 = 3α0α1F
µα−1,µ|0〉 = 3

pν

√
2
Fν |0〉 (71)

In the rest frame we again see that we need F 0 = 0, and we thus get a physical state with this
condition.

Thus we have been able to make as pure gauge states the states which have arbitrary F i, which
means that we can get arbitrary C0i 6= 0. We can add these pure gauge states to any physical state
to get a physical state which has

C0i = 0 (72)

So we can indeed make physical states where C0i are gauged away.

Before proceeding, recall that the pure gauge state that we have made is of the kind that we
discussed in the last set of notes:

|ψ〉 = L−1|λ〉, Ln|λ〉 = 0 for n > 0 (73)

Let us now see if we can get another pure gauge state in the same manner that we obtained there
are level 2. Thus we try

(L−2 + γL2
−1)|0〉 (74)

Note that
Ln|0〉 = 0, n > 0 (75)

So we know from our general analysis that we must have γ = 3
2 and D = 26. Thus the state will

have the form

(L−2 +
3

2
L2
−1)|0〉 (76)

Let us compute this explicitly. The relevant part of L−2 is

L−2 =
1

2
α−1α−1 + α−2α0 + . . . (77)

Thus creates

L−2|0〉 =
pµ√

2
αµ
−2|0〉 +

1

2
αµ
−1αµ,−1|0〉 (78)

The first L−1 generates

L−1|0〉 = αµ
−1αµ,0|0〉 =

pµ√
2
αµ
−1|0〉 (79)
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For the next application of L−1 we need the following terms in L−1

L−1 = α−1α0 + α−2α1 + . . . (80)

We find
L2
−1|0〉 =

pµpν

2
αµ
−1α

ν
−1 +

pµ√
2
αµ
−2|0〉 (81)

Overall we get

(L−2 +
3

2
L2
−1)|0〉 =

5

2

pµ√
2
αµ
−2|0〉 +

1

2
αµ
−1αµ,−1 +

3

4
pµpνα

µ
−1α

ν
−1 (82)

In our general form of the state

Cµνα
µ
−1α

ν
−1|0〉 +Dµα

µ
−2|0〉 (83)

we find that our pure gauge state will be of the form

Cµν =
1

2
ηµν +

3

4
pµpν (84)

Dµ =
5

2

pµ√
2

(85)

Recall that the constrains from L1|ψ〉 = 0, L2|ψ〉 = 0 were respectively

1√
2
Cµνp

ν +Dµ = 0 (86)

Cµ
µ +

√
2pµDµ = 0 (87)

Note that p2 = −4, and in the rest frame, p = (2, 0, 0, . . . 0). We can then check that both these
conditions are satisfied. Consider the first one. We get

1√
2
[
pµ

2
+

3

4
(−4)pµ] +

5

2

pµ√
2

= 0 (88)

The second condition gives

(
D

2
+

3

4
(−4) +

√
2(−4)

1√
2

5

2
) =

D

2
− 3 − 10 = 0 (89)

where we have used that D = 26.

So we indeed have another physical state which is pure gauge from here. Let us now get the true
degrees of freedom in a convenient gauge. We have already seen that C0i can be set to zero, and
this makes Di = 0. We are working in the rest frame. Using the pure gauge state (78) we see that
we can set D0 = 0. From the first physical condition (86) we then get

C00 = 0 (90)

Thus we are left only with the components Cij. The second physical condition (87) then gives

Cii = 0 (91)

So our degrees of freedom correspond to a traceless symmetric tensor whose components are or-
thogonal to the momentum of the particle.
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