
1 Modular invariance

In string theory we have a 2-d world sheet. The path integral over this world sheet gives a quantity
Z. But we can compute Z in a Hamiltonian formulation as well, which needs that we choose
one direction as space and another as time. Of course both choices should give the same answer,
but this is not manifestly obvious from the computation. Checking this equality needs interesting
mathematical identities. The physics of modular invariance provides deep properties of string
theory: consistency conditions and dualities.

2 The 1-loop path integral

The Hamiltonian is given by the energy, which is given by

E =

∫

dΣµTµνξ
ν (1)

where dΣµ is the volume element of a surface and ξν is the timelike killing vector of the system.
The metric is

ds2 = −dτ2 + dσ2 (2)

We have
dΣτ = dσ (3)

ξτ = 1, ξσ = 0 (4)

Thus we have

E =

∫ 2π

0
dσTττ (5)

But

Tττ = Tzz
∂z

∂τ

∂z

∂τ
+ Tz̄z̄

∂z̄

∂τ

∂z̄

∂τ
= Tzz + Tz̄z̄ (6)

where we have used that
z = tE + iσ, z̄ = tE − iσ (7)

where TE is Euclidean time. On the plane we had defined

Ln =

∫

C

dzTzzz
n+1 (8)

We go to the cylinder via the map

z = ew,
∂z

∂w
= ew (9)

Thus

Ln =

∫

C

∂z

∂w
dwTww(

∂w

∂z
)2zn+1 =

∫

C

dwTwwenw (10)

where for the moment we have ignored the anomaly in the transformation. In particular,

L0 =

∫ 2π

0
dσTww (11)
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Thus
E = L0 + L̄0 (12)

The partition function will be

Z =
∑

n

e−EnTE (13)

where our torus extends from tE = 0 to TE . We will assume for now that the space and time
directions of the torus are at right angles to each other. The shape of the torus is specified by
writing

τ = i
TE

2π
(14)

where TE is the length in the time direction and 2π is the length of the space direction.

Now let us return to the anomaly. On the plane, we had

L0|0〉 = 0 (15)

On the cylinder we should get the same result by definition, but we find that

< Tww >= − c

24
(16)

Thus we should write on the cylinder

L0 =

∫

dw(Tww +
c

24
) (17)

and then we will get L0 to annihilate the vacuum.

But now let as ask what it is that we wanted to compute on the cylinder. We wanted to weight each
state with its energy on the cylinder, and the vacuum has a negative Casimir energy contribution
− c

24 . Thus we should not assign E = 0 to the vacuum, rather we should assign − c
24 . Thus we have

to compute

Z =
∑

n

e−2πτ(−i)[(L0−
c
24

)+(L̄0−
c
24

)] =
∑

n

e2πiτ(L0−
c
24

)e2πiτ(L̄0−
c
24

) (18)

Let us define
q = e2πiτ (19)

Thus we have to compute
∑

n

qL0−
c
24 q̄L̄0−

c
24 (20)

where these L0, l̄0 are defined so that they annihilate the vacuum.

3 Computing L0

We have seen that

L0 =
α′

4
p2 +

∑

n>0

α−nαn (21)
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Consider any one oscillator mode αn, α−n. The occupation number in this mode can be 0, 1, 2, . . ..
The state with occupation number m will contribute to L0

α−nαn|m〉 = na†nan|m〉 = nm (22)

The contribution to the path integral from these occupation numbers will be

∞
∑

m=0

qnm =
1

1 − qn
(23)

There are D such oscillators. Thus from all these occupation modes we will get the contribution

[

∞
∏

n=1

1

1 − qn
]D (24)

From the right moving oscillators we will get

[
∞
∏

n=1

1

1 − q̄n
]D (25)

The zero modes will give

∫

dDpq
α′

2
p2

=

∫

dDpe2πiτ α′

2
p2

= [

√

π

−2πiα′

2 τ
]D = [

i

α′τ
]

D
2 (26)

We must now include the factor q−
c
24 q̄−

c
24 , noting that each boson has c = 1. The overall partition

function will be

Z =
[

(
i

α′τ
)

1

2 q−
1

24 (

∞
∏

n=1

1

1 − qn
)q̄−

1

24 (

∞
∏

n=1

1

1 − q̄n
)
]D

≡ ZD
1 (27)

where

Z1 = (
i

α′τ
)

1

2 q−
1

24 (

∞
∏

n=1

1

1 − qn
)q̄−

1

24 (

∞
∏

n=1

1

1 − q̄n
) (28)

is the partition function for one boson.

4 Theta functions

The theta functions have the basic form

∞
∑

n=−∞

e−µn2

(29)

We will write

Θ(z, τ) =

∞
∑

n=−∞

eiπτn2+2πinz (30)

These functions have two main properties. One is that they have product representations. The
other is that they satisfy modular transformation properties. Let us look at the second property
first. This arises from the Poisson resummation formula, which we now describe.
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4.1 The Poisson resummation formula

Suppose we have the sum

Z(τ) =
∞
∑

n=−∞

eiπτn2

(31)

If we see n2 in the exponent, we can imagine that it got there by a Gaussin integral

∫ ∞

x=−∞

dxe−αx2+iβx =

√

π

α
e−

β2

4α (32)

Thus we set

4α = − 1

iπτ
, α =

i

4πτ
(33)

and then use
∫ ∞

x=−∞

dxe−
i

4πτ
x2+inx =

√

−4iπ2τeiπτn2

(34)

This gives

Z(τ) =
∞

∑

n=−∞

∫ ∞

x=−∞

dx
1√

−4iπ2τ
e−

i
4πτ

x2+inx (35)

Let us do the sum first. We have

∞
∑

n=−∞

einx =

∞
∑

m=−∞

2πδ(x − 2πm) (36)

The periodic nature of the LHS is evident, so we get a sum of delta functions. In any interval like
0 ≤ x < 2π, we have

∞
∑

n=−∞

einx = 2πδ(x) (37)

The normalization follows upon integrating both sides in x. The LHS gives 2π from the term n = 0
and no contribution from the other terms.

Thus we have

Z(τ) =

∫ ∞

x=−∞

dx

∞
∑

m=−∞

2πδ(x − 2πm)e−
i

4πτ
x2

(38)

Doing the x integral sets x = 2πm. So have

Z(τ) =

∞
∑

m=−∞

2π√
−4iπ2τ

e−
i

2πτ
4π2m2

=

∞
∑

m=−∞

1√
−iτ

e−
i
τ

πm2

(39)

Thus we have found that

Z(τ) =
1√
−iτ

Z(−1

τ
) (40)
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5 Sum and product representations

We had defined

Θ(z, τ) =

∞
∑

n=−∞

eiπτn2+2πinz (41)

We write
q = e2πiτ (42)

The theta function has a product representation

Θ(z, τ) =

∞
∏

m=1

(1 − qm)(1 + e2πizqm− 1

2 )(1 + e−2πizqm− 1

2 ) (43)

We can also define ‘theta functions with characteristsics’

Θ

(

a

b

)

(z, τ) =

∞
∑

n=−∞

eiπ(n+a)2τ+2πi(n+a)(z+b) (44)

We can look at some special cases:

Θ

(

0
0

)

≡ Θ00 ≡ Θ3 (45)

Θ

(

0
1
2

)

≡ Θ01 ≡ Θ4 (46)

Θ

(

1
2
0

)

≡ Θ10 ≡ Θ2 (47)

Θ

(

1
2
1
2

)

≡ Θ11 ≡ −Θ1 (48)

The function we encounter most commonly will be

η(τ) = q
1

24

∞
∏

n=1

(1 − qn) = [
∂zΘ11(0, τ)

−2π
]
1

3 (49)

The transformation property is

η(−1

τ
) =

√
−iτη(τ) (50)

We can now check that the partition function of the boson is modular invariant. We have

Z1(τ) = (
i

α′τ
)

1

2 |η(τ)|−2 (51)

Thus

Z1(−
1

τ
) = (− iτ

α′
)

1

2 |η(−1

τ
)|−2 (52)
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Using the transformation property of η, we have

Z1(−
1

τ
) = (− iτ

α′
)

1

2 |(−iτ)|−1|η(τ)|−2 (53)

Note that we have taken τ = iτ2 to be pure imaginary in the above discussion. Thus we have

Z1(−
1

τ
) = (

τ2

α′
)

1

2 τ2|−1η(τ)|2 = (
1

α′τ2
)

1

2 |η(τ)|2 = (
i

α′τ
)

1

2 |η(τ)|2 (54)

Thus we see that

Z(−1

τ
) = Z(τ) (55)

Note that if we dropped any mode from the boson, we would not get the modular invariance.

6 Proving the relation between sum and product representations

Let us consider a fermion field in 1+1 dimensions, in a finite box. Then we have a one parameter
set of discrete energy levels. The negative energy levels are filled to make the fermi sea, and the
positive energy levels are empty in this vacuum configuration. One may wonder whether to fill the
zero energy level, but we will not have such a level: we will let the levels be

. . . ,−3

2
,−1

2
,
1

2
,
3

2
, . . . (56)

If we create a fermion in the level 1
2 then it will have energy

E =
1

2
(57)

and charge
L = 1 (58)

since we have added one fermion to the system. If we create a hole in the level −1
2 then we will

again have energy

E =
1

2
(59)

but a charge
L = −1 (60)

since we have deleted a fermion from the system. We can make states with any net energy and
charge. We will compute the partition function by writing

Z =
∑

n

qEnµLn (61)

where the sum runs over all states. We will compute this sum in two ways, and equate the results
to get the desired identity.
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6.1 First method

Consider a positive energy level with E = n − 1
2 . This level can be unoccupied or occupied. The

first gives a contribution 1, while the second gives qn− 1

2 µ. Thus overall we get

(1 + qn− 1

2 µ) (62)

From all the positive energy levels we thus get

∞
∏

n=1

(1 + qn− 1

2 µ) (63)

Now consider a negative energy level E = −(n − 1
2 ). If it is occupied, we get 1. If it is unoccupied,

we get qn− 1

2 µ−1. From all these levels we will get

∞
∏

n=1

(1 + qn− 1

2 µ−1) (64)

Thus the total partition function is

Z =

∞
∏

n=1

(1 + qn− 1

2 µ)(1 + qn− 1

2 µ−1) (65)

6.2 Second method

We start with the vacuum, and first make the lowest energy state that has charge L. Suppose L

is positive. Then we just add L fermions in the levels 1
2 , 3

2 , . . . L − 1
2 . If L is negative, we remove

fermions from the highest L levels. We call the resulting state the vacuum in the charge sector L.

Now focus on one such charge sector. We want to see all states in this sector and record their
energies. The vacuum itself has an energy

E =
1

2
+

3

2
+ . . . L − 1

2
=

L(L + 1)

2
− L

2
=

L2

2
(66)

Now let us see how other states with higher energy can be constructed. Suppose we want to raise
the energy further by E1. Then this energy can go towards raising some set of fermions to higher
energy levels. Suppose we take the highest fermion and move it up by λ1 units. We move the next
fermion up by λ2 units. We cannot take λ2 > λ1, because if we did that then the fermions would
either land up in the same level (for λ2 = λ1 + 1), which is not allowed by the Pauli principle, or
the second fermion would end up higher than the first, and give us a double counting of states (the
fermions are indistinguishable, so we do not want to count as distinct the possibilities where one
or other fermion was the highest one). Thus we need

λ1 ≥ λ2 ≥ . . . λk (67)

where we moved k fermions in all. Further, we must have
∑

k

λk = E1 (68)
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Thus for each partition of E1 we get a new state. Thus the number of states is

p(E1) (69)

where p(n) is the number of partitions of n. The contribution to the partition function from this
sector will be

Z → q
L2

2 p(E1)q
E1µL (70)

But the count of states with extra energy E1 is the same for all charge sectors L. Thus we will
have

Z = (

∞
∑

E1=0

p(E1)q
E1)(

∞
∑

L=−∞

µLq
L2

2 ) (71)

Now we will check that
∞
∑

E1=0

p(E1)q
E1 =

∞
∏

n=1

1

1 − qn
(72)

To prove this, note that
1

1 − qn
= 1 + qn + q2n + q3n + . . . (73)

Look for a power of qE1 in
∏∞

n=1
1

1−qn . Suppose that from the expansion (73) we pick the term sn.
Then we will say that the term n appears s times in the partition of E1. Overall if we have sini

from several different factors 1
1−qni

, then we will have
∑

i

sini = E1 (74)

and the count of these possibilities gives p(E1). This proves (72).

Thus we have found

Z =

∞
∏

n=1

1

1 − qn
(

∞
∑

L=−∞

µLq
L2

2 ) (75)

6.3 Equating the two methods

Equating the two results for Z we get
∞
∏

n=1

1

1 − qn
(

∞
∑

L=−∞

µLq
L2

2 ) =

∞
∏

n=1

(1 + qn− 1

2 µ)(1 + qn− 1

2 µ−1) (76)

or
∞
∑

L=−∞

µLq
L2

2 =

∞
∏

n=1

(1 − qn)(1 + qn− 1

2 µ)(1 + qn− 1

2 µ−1) (77)

Now setting
q = e2πiτ , µ = e2πiz (78)

we get

Θ(z, τ) =

∞
∑

n=−∞

eiπτn2+2πinz =

∞
∏

m=1

(1 − qm)(1 + e2πizqm− 1

2 )(1 + e−2πizqm− 1

2 ) (79)

as desired.
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7 Exercises

(A) Prove that

θ00(
z

τ
,−1

τ
) = (−iτ)

1

2 e
πiz2

τ θ00(z, τ) (80)

(B) Prove that

η(τ) ≡ q
1

24

∞
∏

n=1

(1 − qn) = [
∂zΘ11(0, τ)

−2π
]
1

3 (81)
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