
Cosmological Issues

1 Radiation dominated Universe

Consider the stress tensor of a fluid in the local orthonormal frame where the metric is ηab

Tab =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (1)

We do not often go to such a frame in actual computations, but quite often we have a
metric that is diagonal. For example, in Cosmology we will work with the metric

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] (2)

When we change coordinates to arbitrary new coordinates, the above stress tensor will no
longer be diagonal in general. But when the metric is diagonal, we do have nice values for
the components Ta

b. We will get

Ta
b =

∂xc

∂ξa
∂ξb

∂xd
Tc
d (3)

If the coordinate transformation between the local orthonormal frame and the actual co-
ordinates is diagonal, then we get

Ta
b =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (4)

Let us now consider the conservation equation Ta
b
;b = 0. We get

T0
b
;b = −Γc0bTc

b +
1√
−g

(T0
b√−g),b = 0 (5)

We have

Γi0j = δij
ȧ

a
,
√
−g = aD−1, T0

0 = −ρ, Ti
j = δijp (6)

and we find

−(D − 1)p
ȧ

a
− 1

aD−1
(ρaD−1),t = 0 (7)
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Let us now take the equation of state

p = wρ (8)

where w is a constant. Then we get

ρ̇+
ȧ

a
ρ(D − 1)(1 + w) (9)

which has the solution

ρ =
C

a(D−1)(1+w)
(10)

For radiation, we have w = 1
D−1 , and we get

ρ =
C

aD
(11)

In particular, for our 3 + 1 dimensional Universe, we get

ρ =
C

a4
(12)

2 Expansion of the radiation filled Universe

Let us solve for the expansion of the Universe with radiation. We have

Gtt = 3(
ȧ

a
)2 = 8πGTtt = 8πG

A

a4
(13)

This gives

ȧ2a2 =
8πGA

(14)

which has the solution

a = (
32πGA

3
)
1
4 t

1
2 (15)

We thus find

ρ =
A

a4
=

3

32πG

1

t2
(16)

Restoring powers of c, we have

ρ =
3c4

32πG

1

t2
(17)

We can relate this energy density to temperature. The energy density of black body
radiation is given by

ρ =
π2k4

30(~c)3
fT 4 (18)

where f is the number of massless ‘species’. For photons, we have 2 polarizations, so f = 2.
Thus given f for the early Universe, we can find the temperature T as a function of time
t after the big bang.
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3 Light propagation in the Universe

We will soon see that besides the radiation dominated and matter dominated phases of
expansion, we will also look for an exponentially expanding ‘inflation’ phase. To see why
we might be interested in such an exponentially inflating phase in our Universe, let us look
at how signals propagate in Cosmology. Let us start again with the ansatz

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] (19)

A particle can be ‘at rest’ at a location (x0, y0, z0); its worldline would just move in the
t direction as the Universe expands. Thus we call the coordinates x, y, z comoving coor-
dinates. The distance between two values of comoving coordinates will increase as the
Universe expands. Thus two particles of dust can sit at two different fixed values of the
comoving coordinates, and their separation will keep growing with the scale factor of the
Universe.

Now consider a particle at comoving coordinates (x0, y0, z0) at time t0, and suppose that
it emits a photon at this time. The photon can head in any direction in the x, y, x space; by
choice of coordinates we can assume that it is heading in the x direction. By symmetry, it
cannot bend its path towards either positive or negative y, or towards positive or negative
z, so its direction of motion will remain in the x direction as the Universe expands. We
now ask: where will the photon be at time t?

Since the photon travels along a null geodesic, we get

ds2 = −dt2 + a2(t)dx2 = 0 (20)

which gives

dx =
dt

a(t)
, x(t) =

∫ t

t0

dt

a(t)
(21)

Thus given the expansion a(t), we can find out where the photon would be at any time t.
One quantity we can immediately compute with the above expression is the comoving

distance travelled by a photon from the time the Universe began. Thus let the photon
start at (x, y, z) = (0, 0, 0), at time t = 0 which we take to be the ‘big bang’ when a(t) = 0.
Then we will have

x =

∫ t

0

dt

a(t)
(22)

Suppose that we have a dust filled Universe with a = a0t
2
3 . Then we will get

x = a0

∫ t

0

dt

t
2
3

= 3a−10 t
1
3 (23)

No influence can spread out from the point (0, 0, 0) faster than the speed of light, so the
entire zone that can be influenced by this point at time t is covered by the points

r =
√
x2 + y2 + z2 ≤ 3a−10 t

1
3 (24)

3



We see that this zone of influence has zero comoving size at t = 0, and then grows with
time.

The early Universe is actually radiation filled, which gives a = a0t
1
2 . We again get a

similar behavior for the zone of influence

x = a0

∫ t

0

dt

t
1
2

= 2a−10 t
1
2 (25)

The problem arises when we look at the sky today. We get microwave background
photons streaming to us from all points on the sky. Suppose one photon comes from a
point (x1, y1, z1), and another from a point (x2, y2, z2). These photons have been streaming
to us unimpeded from a definite time td: the ‘decoupling’ time when the matter density
fell to a value so low that the typical photon did not interact with anything after that and
is being picked up in our detector today. We should now ask if these two photons should
come from regions with the same temperature. This temperature can be same if these two
points (x1, y1, z1) and (x2, y2, z2) could communicate with each other in the past, and in
some way came to a temperature equilibrium with each other. This would need that

|~x2 − ~x1| ≤ 3a−10 t
1
3
d ≡ dmax (26)

where we have used the dust filled Universe expansion for illustration. If on the other
hand we have points separated by more than this distance, then there is no reason for the
temperatures of the two photons to agree.

Let us ask how far apart two points would look in the sky if their comoving coordinates
were separated by dmax. The photons coming from ~x1 has, in reaching to us today (time
t), travelled a comoving distance

dtravel =

∫ t

td

dt

a(t)
= 3a−10 [t

1
3 − t

1
3
d ] (27)

Thus for the angular separation of the two points ~x1, ~x2 we get

∆θ ≈ dmax
dtravel

=
t
1
3
d

t
1
3 − t

1
3
d

≈
( td
t

)
1
3 (28)

where in the last step we have used the fact that t� td. We have

td ≈ 3× 105 yrs, t ≈ 3× 1010 yrs (29)

so that we get
∆θ ∼ .02 radians ≈ 1.20 (30)

Thus the sky should show uniformity of temperature only across a few degrees at most. But
observations tell us that the entire sky has the same temperature to a first approximation.
How can we understand that?
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4 Inflation

Let us first see how we can get an exponentially expansing scale factor in our Universe;
next w will see how it solves some of the difficulties with our picture of Cosmology.

Consider a scalar field with action

S =

∫
ddξ
√
−gL =

∫
ddξ
√
−g[−1

2
φ,aφ

,a − V (φ)] =

∫
ddξ
√
−g[−1

2
φaφ,bg

ab − V (φ)] (31)

The equation of motion is

φ,a
;a − ∂V

∂φ
= 0 (32)

We have

δS =

∫
ddξ
(

[−1

2

√
−ggabδgab][−

1

2
φ,cφ

,c − V (φ)]− 1

2

√
−gφ,aφ,bδgab

)
(33)

Writing

δS = −
∫
ddξ
√
−g1

2
Tabδg

ab (34)

We find

Tab = φ,aφ,b −
1

2
gabφ,cφ

,c − gabV (φ) (35)

Suppose that V (φ) has a minimum at φ0

∂V

∂φ
(φ0) = 0,

∂2V

∂φ2
(φ0) > 0 (36)

From the first of these equations, we see that a solution to the field equation (32) is

φ = φ0 (37)

For this solution we have the stress tensor

Tab = −gabV (φ0) (38)

Thus the stress tensor is proportional to the metric.
Let us now see what the Universe may look like with such a stress tensor. Let us try

the ansatz of a Universe with flat spatial slices

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] (39)

We have

Gtt = 3(
ȧ

a
)2 = 8πGV (φ0)

Gxx = −2aä− ȧ2 = −8πGa2V (φ0) (40)
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with Gyy = Gzz = Gxx. The first equation has the solution

a = a0e
H0t (41)

where a0 is a constant and

H0 =

√
8πG

3
V (φ0) (42)

We then observe that the second equation is satisfied as well, so we have a valid solution
of Einstein’s equations. This is the inflating Universe.

5 The effect of inflation

We had seen above that based on the traditional big band scenario with its radiation and
matter dominated phases we had a problem with understanding how the Universe could be
homogeneous across the entire width of the visible sky. But if can add an inflating phase in
our Cosmology, then small distances get ‘stretched’ to larger distances, and homogeneity
across small scales can become homogeneity across much larger scales.

We split the evolution of the Universe into different stages, and study each in turn.

5.1 From t = 0 to the GUT era

The first phase of the Universe is a radiation dominated phase, which we follow from
time t = 0 to t = tGUT , the time when strong, weak and electromagnetic interactions are
all equally strong. At this time, the comoving distance across which physics could have
equilibriated is given by (25)

|~x2 − ~x1| = 2ca−10 t
1
2
GUT (43)

where we have now restored the factor of c since we will be computing actual lengths in
what follows. The physical size of this comoving interval is

dGUT = a(tGUT )|~x2 − ~x1| = a0t
1
2
GUT 2ca−10 t

1
2
GUT = 2ctGUT (44)

Let us now see what the value of tGUT is. The GUT energy scale is 1015 Gev, 4 orders
below the planck scale of 1019 GeV . Thus the temperature at the GUT scale is 1015Gev,
and the wavelength of typical quanta is

λGUT ∼ 104lp ∼ 104 × 10−33cm ∼ 10−29cm (45)

What is the time tGUT ? We have for an radiation filled Universe

ρ ∼ T 4, (
ȧ

a
)2 ∼ 1

t2
∼ Gρ ∼ GT 4 (46)
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Thus

T ∼ 1

(Gt2)
1
4

(47)

In units where c = 1, ~ = 1 we have G = l2p, and we see that at t = tp we have T = 1
lp

.
Thus at planck time we have planck temperature. But thereafter the temperature falls as
1

t
1
2

, so it drops by the factor 104 needed to reach the GUT scale after at

tGUT ∼ tp(104)2 ∼ 10−44 × 108sec ∼ 10−36sec (48)

The horizon scale is then

dGUT ∼ 2ctGUT ∼ 2× 3× 1010 × 10−36cm ∼ 10−25cm (49)

5.2 The inflationary phase

Next we assume that the Universe has a scalar field which leads to inflation. In this phase
we have seen that the scale factor will expand like

a = ã0e
H0t (50)

Each time the coordinate t increases by H−10 , the Universe grows in size by a factor e. We
call this one ‘e-fold’. Suppose we have n e-folds. Then the distance dGUT expands to a
length

dend = endGUT (51)

at the end of inflation. During inflation, the temperature of the Universe remains low
because all the energy is bound up in the scalar field vacuum energy. But when inflation
ends, this energy is released into heat. The resulting temperature is again tGUT , the
temperature before inflation began. The reason for this is simple. The temperature TGUT
allowed the field to achieve a vacuum state where the energy was also of order TGUT . During
inflation the vacuum energy density does not change. Thus when inflation ends, we get a
thermal bath with temperature TGUT again.

5.3 Expansion after inflation

After the end of inflation, the Universe expands again, to reach its present size. The size of
the visible Universe today is 3000 Mpc, where 1 pc is 3× 1018 cm. This gives our present
horizon a size

d = 1028 cm (52)

How much has the Universe expanded since the end of inflation? Part of this expansion
has been radiation dominated and part matter dominated, but there is a simple way to get
the overall expansion factor. The temperature at the GUT era was 1015 GeV . The relics of
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this temperature are the microwave photons today, with a temperature 2.70K ∼ 10−4 eV .
We have seen that the wavelength of the photons increases linearly with the scale factor a.
Thus the scale factor has increased since the end of inflation by a factor

a(t)

a(tend)
∼ 1015 × 109

10−4
= 1028 (53)

5.4 Inflation and the horizon problem

Now we come to the effect of inflation on the horizon problem. We have assumed that at
time tGUT we have a horizon size given by the distance that light could travel from t = 0
to tGUT in a radiation dominated expansion. This gave a horizon distance dGUT . We will
not look for any further effects of communication between different regions, but ask that
this region of size tGUT expand to the present day horizon distance. We will get a factor ef

from inflation, and a factor 1028 from the time since the end of inflation. Thus the overall
expansion factor is ef × 1028. This expansion should convert dGUT to d, which is a ratio of

d

dGUT
=

1028 cm

10−25 cm
∼ 1053 (54)

Thus we need
ef × 1028 ∼ 1053, ef ∼ 1025, f ∼ 58 (55)

If we had been more careful with our factors of 2 etc, we would actually find f ∼ 60. Thus
if we had more than 60 e-folds of inflation, then we would solve the horizon problem; i.e.,
the Universe can be expected to look homogeneous across the 3000Mpc that we are able
to see in the sky today.

6 The flatness problem

Inflation also solves the flatness problem, which we discuss now.

6.1 Curvature in the Universe

In our discussions we have used the ansatz for the metric which has flat spatial section.
The reason for this is that the Universe we observe around us indeed appears to be flat,
or at least so close to flat that we cannot tell it apart from a flat Universe. But we could
have had instead one of the other two Cosmologies; one with positively curved spheres
as spatial slices, or one with negatively curved hyperboloids. Let us take the positive
curvature Universe as an illustration and see what the flatness problem is.

For the closed Universe the equation Gtt = 8πGTtt gives

(
ȧ

a
)2 +

1

a2
=

8πG

3
ρ (56)
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which we can write as

ȧ2 + 1 =
8πG

3
ρa2 (57)

Let us get a rough physical interpretation of the terms in this equation. Write the RHS as

8πG

3

ρa3

a
∼ GM

a
(58)

where ρa3 ∼M is the mass in the ball. Recall that GM
r gives the potential energy per unit

mass. (Note that this quantity has no unit, since c = 1.) Thus the RHS is like a potential
energy term. The first term on the LHS is now seen to be like a kinetic energy per unit
mass, since ȧ gives the ‘velocity of expansion’ of the matter in the Universe.

Now suppose we have a radiation dominated Universe with ρ = A
a4

. Then we have
8πG
3 ρa2 = 8πGA

3a2
. At very small a we see that this goes to infinity. To balance (57) we need

ȧ2 to diverge as well. Thus for small a we see that the second term on the LHS of (57)
becomes irrelevant, and we get

ȧ2 ≈ 8πG

3
ρa2 (59)

which is the equation for a flat Universe.
On the other hand for larger a the closed Universe does not behave like a flat one. At

some point we reach a value a = amax where

8πGA

3a2max
= 1 (60)

At this point we see that ȧ must vanish, and the Universe turns back and starts contracting
towards smaller a. We now ask: What should be the value of amax?

Note that a has the units of length. From the constants G, c available in our physical
set up, we cannot make a quantity with the units of length, so we cannot guess at a typical
turning lengthscale amax from these constants. If we include ~ however, we can make a
quantity with the units of length – planck length lp

lp ∼
√

~G
c3
∼ 10−33cm (61)

Thus we may expect, on the grounds of naturalness, that the Universe will look flat for a
much smaller than the turning point, but at around a = lp the Universe will turn over and
recollapse.

But of course the Universe around us is very large (1028cm as we saw above). How
should we explain this?
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6.2 The GUT era

Let us assume that in some way we manage to extend the life of out Universe to to time
tGUT . We have

tGUT = 108tp ∼ 10−36sec (62)

At this point since the Universe is recollapsing, all terms in (56) are comparable; in par-
ticular

(
ȧ

a
)2 ∼ 1

t2GUT
∼ 1

a2
(63)

so that the curvature radius of the Universe is

aGUT ∼ ctGUT ∼ 108ctpcm ∼ 3× 10−26cm (64)

where we have restored the factor c in our equation. Thus at tGUT the spatial slices of the
Universe look flat if we look at distances much less than aGUT , but we do see significant
curvature over distances of order aGUT . Note that

aGUT ∼ dGUT (65)

6.3 The effect of inflation

At this GUT era though we can enter into a phase of inflation. This expands the radius
aGUT by a factor ef . The remaining expansion to the present day supplies a factor 1028, as
we saw above. At the end of this expansion, all we ask is that the scale on which we could
see curvature equal the scale of our present visible Universe (or greater), since we see no
clear evidence for curvature across our present horizon. Since the present horizon radius is
1028cm, we ask for

aGUT e
f1028 ∼ 1028cm, ef ∼ 1

3× 10−26
, f ∼ 59 (66)

so that we again get a requirement f & 60.

7 Restoring factors of c

Let us begin with the metric. In flat space we write

ds2 = −c2dt2 + dx2 + dy2 + dz2 (67)

Thus ds has units of length (L). The volume element
√
−gd4x will have units of L4. The

action has units ~ = ET where E is energy and T is time. The action for gravity is

c4

16πG

∫
1

c

√
−gd4ξR (68)
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where we have used that R has units 1
L2 . For matter we study the units of action by looking

at the case of dust

S =

∫
1

2
mv2dt→

∫
1

2
ρv2

1

c

√
−gd4x (69)

The stress tensor is given by

δS = −
∫

1

c
d4ξ
√
−g1

2
Tabδg

ab (70)

Ttt for the flat metric above has units (note that gtt has units 1
c2

)

Ttt ∼ (ET )
1

c2
c

L4
=
M

L3
c4 ∼ ρc4 (71)

Note that now we will have Tt
t = ρc2, which gives a traceless tensor for radiation with

Tx
x = p = 1

3ρc
2. The Einstein equation now becomes

Gab + Λgab =
8πG

c4
Tab (72)

8 Amplitude of the perturbation

The action for the scalar field is

S =

∫
d4x
√
−g[

1

2
φ,aφ

,a − V (φ)] (73)

Let φ = φ0 be the minimum of V , and look at small fluctuations around φ = φ0. We write

φ = φ0 + f(t)eikx ≡ φ0 + φ1 (74)

The leading order solution φ = φ0 causes the Universe to expand as

a = a0e
Ht (75)

where

H =

√
8πGV (φ0)

3
(76)

We ignore the backreaction of the small perturbation φ1 and examine the evolution of φ1
on the inflating metric.
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8.1 Estimating the amplitude of fluctuations

Let us assume that V is quite flat around its minimum, so we ignore the effect of V on the
evolution of φ1. The waveequation for φ1 gives

f̈ + 3Hḟ +
k2

a2
f = 0 (77)

First assume that k
a � H

1
2 . Then we have to solve the equation

f̈ +
k2

a2
f = 0 → f = e−i

k
a
t (78)

Thus
φ1 = Aeikxe−i

k
a
t (79)

Let us estimate the amplitude A arising from vacuum fluctuations. The wavelength is
∆x = k−1. Consider a region with size ∆x = k

a on each side. This has energy

E ∼ A2

λ2
V ∼ A2

(ak )2
(
a

k
)3 ∼ A2 a

k
(80)

This should equal the energy k
a that we get from the frequency of the mode. This gives

A2 a

k
∼ k

a
, A ∼ k

a
(81)

We see that a a increases, the amplitude keeps dropping. But when the wavelength λ ∼ a
k

reaches the the scale H−1, we can ignore the term k2

a2
f and keep the term 3Hḟ instead.

Then the equation becomes
f̈ + 3Hḟ = 0 (82)

which has the solution
f = A+Be−3Ht (83)

The decaying part quickly dies, and we are left with f = A. Thus the amplitude stops
decreasing and becomes a constant. The value of this a at the point is given by

k

a
∼ H, a ∼ kH−1 (84)

which gives

A ∼ k

a
∼ H (85)

Thus all modes freeze at an amplitude A ∼ H after they stretch to a size

λ ∼ a∆x ∼ kH−1k−1 ∼ H−1 (86)
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We say that all modes stretch to the Hubble length and then freeze in amplitude.
Let us compute the energy in the mode when it has wavelength λ′ � H−1. The

amplitude is fixed to H, so the energy is

E ∼ A2

λ′2
λ′3 ∼ H2λ′ (87)

Thus as the mode stretches, its energy increases.
We can solve the following equation, which corresponds to inflation with flat potential

f̈ + 3Hḟ + k2e−2Htf = 0 (88)

The solution is

f = A[−k
a

cos
k

aH
+H sin

k

aH
] +B[

k

a
sin

k

aH
+H cos

k

aH
] (89)

For large k we first see the expected 1
a falloff, and then the freeze out. Since we expect the

amplitude k
a at small wavelengths, we see that A,B ∼ 1, and then we see that the freeze

out happens at φ ∼ H.

9 Slow roll inflation

Now assume that the potential V (φ) is nontrivial, and causes φ to roll to its minimum
from a value that is not at the minimum. The equation for φ is

φ̈+ 3
ȧ

a
φ̇+ V ′(φ) = 0 (90)

Let us see when the first term can be ignored. In this situation, we have

3Hφ̇ = −V ′ (91)

Thus assuming that H does not change,

3Hφ̈ = −V ′′φ̇ = V ′′
V ′

3H
, φ̈ =

V ′′V ′

9H2
(92)

Thus we can ignore the first term if

V ′′φ̇

3H
< 3Hφ̇, V ′′ < 9H2 (93)

Let us see how this would work for V = λφ4. Then

V ′′ ∼ λφ2 < H2 ∼ GV ∼ Gλφ4 (94)

Thus to be able to ignore the first term we need

Gφ2 > 1 (95)

This means that φ > mp, the planck scale, so it is larger than the GUT scale.
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10 The number N of e-folds

We have

N =

∫
d(ln a) =

∫
dt
d ln a

dt
=

∫
dt
ȧ

a
=

∫
dt

√
8πGV

3
(96)

We can write

dt =
dt

dφ
dφ =

dφ

φ̇
(97)

so that we get

N =

∫
dφ

√
8πGV

3

1

φ̇
(98)

In the slow roll approximation with a large H we have

3Hφ̇+ V ′ = 0, φ̇ = − V
′

3H
(99)

Thus

N ∼
∫ √

GV

φ̇
dφ ∼

∫ √
GVH

V ′
dφ ∼

∫
GV

V ′
dφ (100)

11 Putting it all together

Let us take a potential
V = λφ4 (101)

We see that λ has no units, so a natural value would be λ ∼ 1. As it will turn out, we will
need to take λ� 1, which will be a ‘fine-tuning’ problem associated with inflation.

11.1 The constraint from the number of e-folds

We have

N ∼
∫
GV

V ′
dφ ∼ Gφ2 (102)

where we have taken the limits of the range of the integral to start at some value φ typical
of the inflation process and to end at φ = 0. Noting that G ∼ m−2p , and recalling that φ
has units of mass, we learn that

φ

mp
∼ N

1
2 >
√

60 (103)

Note that the condition φ � mp is also the condition needed to ignore the φ̈ term in the
evolution equation for φ.

14



Thus while we may have expected the value of φ to be near the GUTS scale, we find
that it actually has to be much higher than the planck scale. This large value of φ does
not necessarily mean that the potential V caused by φ is larger than the planck scale; we
can make it of order the GUTS scale if we choose λ small enough.

11.2 The constraint from the magnitude of fluctuations

The fractional perturbations are given as follows. At the time that a mode leaves the
horizon and gets frozen in amplitude, we have seen that its amplitude has fluctuations
δφ ∼ H. Because we start with a slightly different value of φ at different places, we will fall
to the bottom of the potential and cease inflating after slightly different times at different
places. This in turn means that we will inflate by different amounts at different places.
Let us compute these differences.

We have

δt ∼ δφ

φ̇
∼ H

φ̇
∼ H2

V ′
(104)

where φ̇ is computed at the time that the mode freezes. The scale factor increases as
a = a0e

Ht, so a small change δt in the total inflation time causes a change in volume

δv

v
∼ δa

a
∼ eH(t+δt) − eHt

eHt
∼ Hδt (105)

Thus we get for the fractional density change caused by quantum fluctuations

δ ∼ Hδt ∼ H3

V ′
(106)

Observations show that δ ∼ 10−5. Applying this to our potential, we have

δ ∼ (GV )
3
2

V ′
∼ λ

1
2φ3

m3
p

(107)

Thus we see that

λ ∼ (
mp

φ
)6δ2 ∼ N−3δ2 < (60)−3(10−5)2 ∼ 10−15 (108)

12 Tensor perturbations

These are perturbations of gravity, of the form

gab = ḡab + hab (109)
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The action for gravity has the form

1

16πG
R
√
−gd4x ≈ m2

p

∫
d4x
√
−g1

2
∂ahbc∂

ahb′c′g
bb′gcc

′
(110)

This is like the action of a scalar field, if we write

mpha
b ∼ φ (111)

Since ga
b = δba, we see that ha

b give the fractional fluctuations of the metric. We have
learnt that the quantum fluctuations of a scalar field like φ get frozen to a value δφ ∼ H−1
during inflation. Thus we expect

δh ∼
H

mp
(112)

But

H ∼
√
GV ∼ V

1
2

mp
(113)

Thus

δh ∼
V

1
2

m2
p

(114)

Since we expect that V ∼ m4
GUT , we get

δh ∼ (
mGUT

mp
)2 ∼ 10−8 (115)

Thus these perturbations are very hard to detect.
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