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Quantum field theory

1.1 Quantum field theory

What is the nature of the vacuum?
We have noted that in quantum theory the vacuum will fluctuate, and these

fluctuations will take the form of particle pairs that appear and disappear. Since
it is these pairs that lead to Hawking radiation and the consequent paradox, it is
vital to understand the quantum vacuum. To do this, we will review the struc-
ture of quantum field theory – the theory that emerges when we put together
quantum mechanics and special relativity. We will find however that there are
some deep unresolved difficulties with the picture of the vacuum in quantum
field theory, and these difficulties become even more severe when incorporate
gravity into the theory.

1.1.1 A theory of many particles

Let us start with nonrelativistic quantum mechanics. Consider a particle in
one dimension x. The particle is described by a wavefunction ψ(x). Suppose
we have a device which can perform a measurement to check if this particle is
between x1 and x1+dx. The probability that the device finds the particle in this
interval is |ψ(x1)|2dx. The overall probability for the particle to be somewhere
is unity ∫ ∞

−∞
|ψ(x)|2dx = 1 (1.1)

Suppose we take two measuring devices, one of which checks for the particle in
the interval (x1, x1 + dx) and the other checks for the particle in the interval
(x2, x2 + dx). One of these devices may find a particle, or neither may find a
particle, but it cannot be the case that both find a particle. The reason is simple:
there is only one particle overall. If the measurement collapses the wavefunction
to the location x1, then this collapsed wavefunction satisfies (1.1) around the
location x1, leaving no probability for the particle to be at x2.

We can immediately see however that this feature must fail in a relativistic
theory. Suppose the first device makes its measurement at position x1 and time
t = 0. A second device at position x2 does not immediately find out that such
a measurement has been made; after all, information cannot travel faster than
the speed of light. Thus if it is possible for the second device to detect the
particle, then it must be possible to make this detection at t = 0 regardless of
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whether the first device detected a particle or not. We conclude that there must
be a nonzero probability that both devices detect particles if their separation is
a spacelike interval.

Where does the second particle come from? Fortunately in a relativistic
theory this is not a problem; the process of measurement requires some energy
E, and this energy can create a particle of mass m if E ≥ mc2. Thus a detector
may either pick up a particle which was already present, or create a new one in
the process of detection.

An immediate consequence of this observation is that relativistic quantum
theory must necessarily be a theory of many particles. But if we have more than
one particle, then we are led to the strange way in which many-particle states
are counted in quantum theory. Let us now turn to this statistics of particles.

1.1.2 Counting boson and fermion states
Let us start with classical physics. Suppose we have two balls, and we toss them
randomly into a set of two bins. There are 4 ways that the balls could land in
the bins:

(1) Both balls in bin 1
(2) Both balls in bin 2
(3) The first ball in bin 1 and the second ball in bin 2
(4) The second ball in bin 1 and the first ball in bin 2

Assuming that each outcome has the same probability, we find that the prob-
ability for the balls to end up in the same bin in 2/4 = 1/2. This way of counting,
appropriate to classical particles, is called Maxwell-Boltzmann statistics.

In quantum theory, it turns out that we need to count in a somewhat different
way. Take two identical particles, and again toss them into two bins. If these
particles are bosons, then we get the possibilities:

(1) Both particles in bin 1
(2) Both particles in bin 2
(3) One particle in bin 1 and one particle in bin 2

Thus the probability that both bosons are in the same bin is 2/3 which is
larger than the value 1/2 we had with classical particles. We say that ‘bosons
try to cluster together in the same state’. But how did we lose possibility (4),
where the two particles would have been interchanged between the bins? The
traditional argument is: “The particles are identical, so we cannot tell if they
have been interchanged. And if we cannot tell that they have been interchanged,
then we should not count their interchanged configuration as a new state.”

While this conclusion is correct, and agrees perfectly with observations, the
argument itself may not sound very convincing. We may not be able to tell
the difference between the particles, but would the particles behave differently
just because of this inability on our part? It might seem that this odd way
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Figure 1.1: caption ...

of counting of particle states must have its origin in the mysteries of quantum
theory. But as we will now see, many everyday classical systems exhibit the
same counting as the example of bosons above.

Consider a tank of water, as shown in fig.??(a). The surface of this water can
have ripples, which are the objects we will count. To mimic the above example
of balls thrown into bins, we discretize our system as follows. We divide the
tank into a left and a right half, to make two ‘bins’. In each bin we can have
ripples, but we allow the ripples to have discrete heights: 1 mm, 2 mm, . . . . A
ripple with height 1 mm corresponds to one particle in the bin, a ripple with
height 2 mm corresponds to two particles and so on.

Now let us count all states which have a total of two ripples. We find the
possibilities:

(1) A ripple with height 2 mm in the left bin.
(2) A ripple with height 2 mm in the right bin.
(3) A ripple with height 1 mm in the left bin and a ripple with height 1 mm

in the right bin.

We see that the counting is just like the one for bosons, though there is
nothing quantum about this problem! A little reflection shows how this example
of ripples differers from the example of classical balls in bins. The balls were
objects that could be put in different places. But the ripples are not really
‘objects’; they are just deformations of an underlying medium – the water in
the tank. Thus it makes no sense to “put the ripple in the left tank into the
right tank and the ripple in the right tank into the left tank”. As a consequence
we end up with only the three possibilities (a)-(c) that are analogous to the
possibilities that we used to count the states of bosons in our bins.

But this suggests that the bosons should also be thought of an ripples on
some medium; if we do that, then the way we count their states would be
completely natural. The question of course is: what is this medium? To answer
this, we postulate the existence of a ‘quantum field φ’; excitations of this field
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will give our bosons, and the theory of excitations of this quantum field is called
‘quantum field theory’.

1.1.3 A model for the field

The photon is also a boson – it has spin equal to 1, an integer – and we need a
field for describing photons as well. This field will be called the electromagnetic
field, and if we follow the discussion above, photons will be excitations of this
field.

At this point the reader may get worried by this picture. Photons are parti-
cles of light, and we are asking light to move as waves on a medium. But doesn’t
this sound just like the theory of ether? In that theory, light was described by
ripples in a hypothetical medium called ether. That picture was in conflict with
Einstein’s theory of relativity, and was disproved by the Michelson-Morley ex-
periment. Can we model photons as excitations of a field, and still have a theory
where the speed of light is the same in all uniformly moving frames?

The ether theory was in conflict with relativity because we were trying to
keep our traditional idea of a fixed universal time. In this traditional approach
one would ask: in which frame is the ether at rest? This rest frame would be
a preferred frame, since in this frame the velocity of light would be the same
in all directions. If we go to a frame moving with some velocity v compared
to this rest frame, then the ether would appear to be moving with velocity
−v in the new frame. Then light waves would travel at speeds c + v along the
direction of this flow, and with speeds c−v in the direction opposite to the flow.
Checking the speed of light in different directions will exhibit this asymmetry.
This asymmetry is what the Michelson-Morley experiment looked for, and failed
to find.

But this difficulty with having a medium only arises if we keep a frame-
independent notion of time. As we will now see, it is in fact quite easy to make
a simple mechanical model for the field which will be consistent with relativity.
Consider a set of pointlike masses m, placed in a row with spacing a. The
masses are joined by springs with spring constant k and relaxed length a.

The mass at any position can be displaced in the x direction by a small
amount. We will use the symbol φ to denote this displacement, and use the
equilibrium location x of that particular point mass to say which mass we are
displacing. Thus the displacement will be given by a function φ(x), where at
this stage x can take only discrete values x = na. We now imagine a limit
where a is small, so we have an almost continuous distribution of mass points.
We then get an almost continuous function φ(x), which we will call our scalar
field. What is the evolution of this field φ(x, t)?

It is not hard to guess this evolution. This chain of masses and springs
sustains waves, which are described by the equation

∂2φ

∂t2
− c2 ∂

2φ

∂x2
= 0 (1.2)
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where
c = (1.3)

This equation has solutions of the form φ = f(x−ct)+g(x+ct), which describe
waves moving to the left and right with speed c.

If we consider the change of variables familiar from special relativity

x′ = coshβx− sinhβt

t′ = − sinhβx+ coshβx (1.4)

then we find that (1.2) becomes

∂2φ

∂t′2
− c2 ∂

2φ

∂x′2
= 0 (1.5)

so we see that the speed of the waves is again ±c. Thus the behavior of our
waves respects the postulate of special relativity.

1.1.4 Quantizing the field

1.1.5 A problem
We seem to have obtained a theory which respects the Lorentz invariance. But
one step in the procedure was the taking of the limit (??) where the wavelengths
being studied were taken to be much longer than the lattice spacing a. But what
happens if we look at the theory at wavelengths of λ ∼ a? The lattice of atoms
did define a preferred rest frame – the frame in which all point masses n are at
rest when the field is unexcited. If we go to a frame moving with respect to this
rest frame, then the masses will appear to be in motion. Further, the spacing
between the masses would be length contracted to a value smaller than a. So
we still seem to have a violation of the principle of relativity, which asks that
all uniformly moving frames behave identically.

The natural way out would be to take the limit a → 0, so that we don’t
see the lattice spacing at all. And this is in fact what is done in quantum field
theory. But it leaves us with a very serious problem, whose solution we still do
not know.

We had seen that the theory of point masses joined by springs was a theory
of a collection of harmonic oscillators. Even if we don’t excite the field, each
oscillator has a ground state energy 1

2~ω. Adding over the frequencies(??), we
find

Eground = (1.6)

1.2 The outline of quantum field theory

We can now state in qualitative terms how quantum field theory describes par-
ticles:
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x

φ

Figure 1.2: caption ...

(a) The degrees of freedom are encoded in a set of coupled harmonic os-
cillators. There is an oscillator variable at each point of space. Each such
oscillator is coupled to its neighbors; thus the overall theory is described by a
local Lagrangian.

(b) We can change variables so that a set of coupled oscillators looks like
a set of decoupled oscillators. If each such decoupled oscillator is placed in its
vacuum state, then we get the lowest energy state of our entire system. This
state will be identified with the vacuum.

(c) Now let us consider the excitations of these coupled oscillators. Large
excitations can be treated to a good approximation by classical mechanics, and
we get the field equations (??). These equations are analogous to the equations
of classical electrodynamics where the scalar field φ is replaced by a vector field
Aµ.

(d) For small excitations, on the other hand, we should consider the quantum
theory of our oscillators. The excitations of a quantum oscillator are discrete,
and can be labelled by an integer n = 0, 1, 2, . . . . If we have a single excitations
n = 1, then we say that we have one particle. If n = 2, then we have two
particles, and so on. Thus the theory automatically describes multiparticle
states. We also have the possibility of creating and annihilating particles, since
we can increase or decrease the number of excitations of a harmonic oscillator
by adding suitable interactions in the theory.

Note that if we excite the oscillators in a given region of space, then the
coupling of these oscillators to other oscillators causes the excitation to spread
over the space x. This spread gives the normal dispersion of a wavefunction over
space, encoded in the Schrodinger equations describing a single particle. The
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eigenstates of the Hamiltonian are wavefunctions spread over all of space, and
correspond to particles with definite momentum rather than definite position.

We will now carry write out this quantum theory of coupled oscillators in
more detail. But we can already see how general relativity will impact the
above picture. In general relativity, mass curves spacetime. When matter moves
around, for example when making a black hole, the the spacelike slices of the
geometry deform. Thus the distances between the points of space change, which
in turn changes the couplings between the oscillators at these points.

There is one effect of this change which will be important for us. Suppose
we start with a state which is the vacuum on the initial slice of spacetime. Af-
ter matter moves and the spacelike slice deforms, the state we have will not
in general be the vacuum state of the coupled oscillators that we get after the
deformation. We can write this new state as the vacuum plus some particle
excitations, since any state of the theory is given by some choice of excitations
levels for the oscillators. This is the phenomenon of ‘particle creation in curved
space’. In particular, this is the phenomenon which gives Hawking’s pair cre-
ation of particles near a black hole horizon, and leads to the information puzzle.

1.3 Diagonalizing the coupled oscillators

The wave equation (1.2) has solutions that moves at the speed of light, so
it describes massless particles. For greater generality, we write the equation
including a mass term

∂2φ

∂t2
− ∂2φ

∂x2
−m2φ = 0 (1.7)

where we have now chosen units where c = 1. This equation follows from an
action

S =

∫
dt L (1.8)

The Lagrangian is

L̂ =

∫
dx L (1.9)

where
L =

1

2
(∂tφ)2 − 1

2
(∂xφ)2 − 1

2
m2φ2 (1.10)

is the Lagrangian density.
We expand φ in Fourier modes

φ(t, x) =

∞∑
n=−∞

φn(t)eiknx (1.11)

It is convenient to think of the space x as a periodic box of length L. This gives
a discrete set of values for kn

kn =
2πn

L
(1.12)



8 LECTURE NOTES 1. QUANTUM FIELD THEORY

Since φ is real we have
φn = φ∗−n (1.13)

Writing
φn = φRn + iφIn (1.14)

we get
φRn = φR−n, φIn = −φI−n (1.15)

Let us now compute the Lagrangian L. A little algebra gives

L =

∞∑
n=1

[L(φ̇Rn )2 − Lω2
n(φRn )2] +

∞∑
n=1

[L(φ̇In)2 − Lω2
n(φIn)2] +

L

2
[(φ̇0)2 − ω2

0(φ0)2]

(1.16)
where

ω2
n = k2

n +m2 (1.17)

We see that the free scalar field is equivalent to a collection of harmonic oscil-
lators. We can thus quantize the scalar field by just quantizing these harmonic
oscillators.

1.4 The harmonic oscillator

Let us first recall the quantization of a single harmonic oscillator. Let the
position variable be q. The Lagrangian is

L =
1

2
mq̇2 − 1

2
kq2 (1.18)

This gives

p = mq̇, H =
p2

2m
+
k

2
q2 (1.19)

We write

ω =

√
k

m
(1.20)

Upon quantization the Hamiltonian becomes

Ĥ =
p̂2

2m
+
k

2
q̃2 (1.21)

We can expand this as

Ĥ = (

√
k

2
q̂ − i p̂√

2m
)(

√
k

2
q̂ + i

p̂√
2m

) +
1

2
ω (1.22)

Define

â† =
1√
ω

(

√
k

2
q̂ − i p̂√

2m
), â =

1√
ω

(

√
k

2
q̂ + i

p̂√
2m

) (1.23)



1.5. QUANTIZATION OF THE SCALAR FIELD 9

This gives
[â, â†] = 1 (1.24)

and

Ĥ =

(
â†â+

1

2
)

)
(1.25)

Note that the original position variable can be written as

q̂ =

√
ω

2k
(â+ â†) (1.26)

1.5 Quantization of the scalar field

Let us now apply this quantization of a harmonic oscillator to the full set of
oscillators describing the scalar field φ̂.

Each Fourier component φRn , φIn, (n > 0) is the ‘position’ coordinate of a
harmonic oscillator. This oscillator has

m = 2L, k = 2Lω2
n, ω =

√
k

m
= ωn (1.27)

Thus we have
φ̂Rn =

1

2
√
Lωn

(âRn + (âRn )†) (1.28)

φ̂In =
1

2
√
Lωn

(âIn + (âIn)†) (1.29)

For the zero mode we have

m = L, k = Lω2
0 , ω = ω0 (1.30)

φ̂0 =

√
1

2Lω0
(â0 + â†0) (1.31)

Using (1.15) we can write the classical field as

φ(t) =
∑
n

(φRn (t) + iφIn(t))eiknx

=
∑
n>0

2φRn (t) cos(knx)−
∑
n>0

2φIn(t) sin(knx) + φ0(t)

(1.32)

Upon quantizing we should just convert the ‘position variables’ q(t) of the har-
monic oscillators to ‘position operators’ q̂

φ̂ =
∑
n>0

2φ̃Rn cos(knx)−
∑
n>0

2φ̂In sin(knx) + φ̂0 (1.33)
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In terms of creation and annihilation operators we get

φ̂(t) =
∑
n>0

1√
Lωn

(âRn + (âRn )†) cos(knx)−
∑
n>0

1√
Lωn

(âIn + (ãIn)†) sin(knx)

+

√
1

2Lω0
(â0 + (â0)†)

(1.34)

We thus see that the operator (âRn )† is a creation operator associated to the
wavefunction cos(knx) and (âIn)† is associated to sin(knx). We would like to
create and annihilate particles of definite momentum eiknx. For n > 0 define

ân ≡
1√
2

[âRn + iâIn], n > 0 (1.35)

For n < 0 we can similarly define

ân ≡
1√
2

[âRn + iâIn], n < 0 (1.36)

where the operators âRn , âIn for negative n are given through (1.15). We then
find

â†n =
1√
2

[(âRn )† − i(âIn)†], n 6= 0 (1.37)

We find the commutation relations

[âm, â
†
n] = δm,n (1.38)

The zero mode operators stays as before. Writing

cos(knx) =
1

2
[eiknx + e−iknx], sin(knx) =

1

2i
[eiknx − e−iknx] (1.39)

we get

φ̂ =

∞∑
n=−∞

1√
L

1√
2ωn

[âne
iknx + ân∂e

−iknx] (1.40)

This form is not very symmetrical between x, t since the operators depend
on x but not on t. We move to the Heisenberg picture where we have

Ô(t) = eiĤtÕe−iĤt (1.41)

For a harmonic oscillator
Ĥ = ωã†â (1.42)

Note that
[â, Ĥ] = ωâ, [â†, Ĥ] = −ωâ† (1.43)

We can thus move â across e−iH̃t in

â(t) = eiH̃tâe−iH̃t (1.44)
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getting
â(t) = âe−iωt (1.45)

â†(t) = â†eiωt (1.46)

Then in the Heisenberg picture the operator φ̂ becomes

φ̂(x, t) =

∞∑
n=−∞

1√
V

1√
2ωn

[âne
iknx−iωnt + â†ne

−iknx+iωnt] (1.47)

We now see a covariant dot product between the position vector (t, x) and the
momentum (ωn, kn).

1.6 Quantum fields in curved space

We can easily extend our above discussion to 3+1 dimensional spacetime. The
field operator becomes

φ̂ =
∑
~k

1√
V

1√
2ω

(
â~ke

i~k·~x−iωt + â†~k
e−i

~k·~x+iωt
)

(1.48)

where V is the volume of the spatial box where we have taken the field to

live, and ω =

√
|~k|2 +m2 for a field with mass m. The vacuum is the state

annihilated by all the â
â~k|0〉 = 0 (1.49)

and the â†~k create particles.
In curved spacetime, on the other hand, there is no canonical definition of

particles. We can choose any coordinate t for time, and decompose the field
into positive and negative frequency modes with respect to this time t. Let the
positive frequency modes be called f(x); then their complex conjugates give
negative frequency modes f∗(x). The field operator can be expanded as

φ̂(x) =
∑
n

(
ânfn(x) + â†nf

∗
n(x)

)
(1.50)

Then we can define a vacuum state as one that is annihilated by all the annihi-
lation operators

ân|0〉a = 0 (1.51)

The creation operators generate particles; for example a 1-particle state would
be

|ψ〉 = â†n|0〉a (1.52)

We have added the subscript a to the vacuum state to indicate that the vacuum
is defined with respect to the operators ân. But since there is no unique choice
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of the time coordinate t, we can choose a different one t̃. We will then have a
different set of positive and negative frequency modes, and an expansion

φ̂(x) =
∑
n

(
b̂nhn(x) + b̂†nh

∗
n(x)

)
(1.53)

Now the vacuum would be defined as

b̂n|0〉b = 0 (1.54)

and the b̂†n would create particles.
Given this situation, which is the ‘correct’ definition of particles? The situ-

ation can be summarized as follows:

(i) If spacetime is flat, then we should use the Minkowski time t to define
modes as in (??), and this defines our particles. We can of course go to a frame
that is uniformly moving with respect to our initial frame, and then we have a
new Minkowski time t′. But it turns out that this change does not affect the
definition of the vacuum. The different operators â~k get relabelled because the
momentum changes ~k → ~k′, but annihilations operators remain annihilation
operators and so the definition of the vacuum (1.51) is unaffected.

(ii) In general spacetime is not flat. Suppose that at a location x the cur-
vature length scale is l. Then over distances much less than l the space can be
treated as essentially flat. Thus for wavelengths λ ∼ |~k|−1 � l, local particles
defined the same way as in (a). But for λ & l, we have no unique definition of
particle.

(iii) Even though the definition of particle is ambiguous in general, there is
a well defined meaning to 〈Tµν(x)〉, the expectation value of the stress-energy
tensor at a point in spacetime. This quantity is independent of the definition
we choose for particles, and in fact can be computed by doing a path integral
over the field φ without choosing any definition of particle.

The underlying assumption in defining the operator Tµν(x) is that its expec-
tation value should vanish in the vacuum state of flat spacetime. We can then
carry the same definition of Tµν(x) to curved space, where we find a nonzero
value in general. The assumption 〈Tµν(x)〉 = 0 in the flat space vacuum appears
to be a natural one. But hidden in this assumption is the cosmological constant
problem: why must we subtract the energy of vacuum fluctuations in exactly
such a way that this expectation value vanishes? There is as yet no clear answer
to this question.

1.6.1 A conserved inner product
In nonrelativistic quantum mechanics, the inner product

(χ, ψ) =

∫
d3 xχ∗(x)ψ(x) (1.55)
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is conserved for two solutions χ, ψ of the Schrodinger equation. This inner
product is positive definite, since (ψ,ψ) is the integral of the probability density
|ψ|2. For the correctly normalized wavefunction, (ψ,ψ) equals unity at all times,
since the particle has a probability 1 to be somewhere in the whole space at any
time t.

In quantum field theory, particles can be created and destroyed, since they
are just excitations of an underlying field. Nevertheless, there is a conserved
inner product for for the functions f, f∗ appearing in the expansion of φ̂. This
inner product is however, not positive definite; it is positive on functions like
the f that multiply the annihilation operator â, and is negative in functions f∗
which multiply that â†. This inner product will be very useful to us in relating
different expansions of the field φ̂.

1.6.2 Obtaining the inner product

Consider two functions f1, f2 which satisfy the waveequation

�f =
1√
−g

∂µ
(
gµν
√
−gf,ν

)
= 0 (1.56)

Thus �f∗1 = 0 and �f2 = 0. Consider the product f∗1�f2 = 0, and integrate
over the spacetime slab between two hypersurfaces Slower and Supper

0 =

∫
d4x
√
−gf∗1�f2

=

∫
d4x
√
−gf∗1

1√
−g

∂µ
(
gµν
√
−gf2,ν

)
=

∫
d4xf∗1 ∂µ

(
gµν
√
−gf2,ν

)
(1.57)

We can now integrate The ∂µ derivative by parts. We assume that the functions
die off at large spatial distances, so the only boundary terms are B̃upper and
B̃lower from the hypersurfaces Supper and Slower

0 = −
∫
d4xf∗1,µg

µν√−gf2,ν + B̃upper − B̃lower (1.58)

The boundary terms can be written in a covariant form

B =

∫
d3ξdΣµf

∗
1 g

µν√−gf2,ν (1.59)

where ξi, i = 1, 2, 3 are coordinates in the 3-dimensional spatial hypersurface.
Alternatively, we can take the intrinsic metric hij of the hypersurface, and write

B =

∫
d3ξ
√
hf∗1 ∂nf2 (1.60)
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where ∂n is the derivative in the direction along the unit normal to the hyper-
surface.

The bulk integral in (1.58) is symmetric under the interchange f∗1 ↔ f2.
Thus we can cancel it by taking

0 =

∫
d4x
√
−gf∗1�f2 −

∫
d4x
√
−gf2�f

∗
1

= Bupper −Blower (1.61)

where

B =

∫
d3ξ (f∗1 ∂nf2 − f2∂nf

∗
1 ) (1.62)

Since The difference of B on the upper and lower hypersurfaces vanishes, we
find that B is conserved along the evolution for any two solutions f1, f2 of the
waveequation. If we choose f1 = f2, then we get a purely imaginary quantity.
It is conventional to add a factor i to make this real; thus we define the inner
product

(f1, f2) = i

∫
d3ξ
√
h (f∗1 ∂nf2 − f2∂nf

∗
1 ) (1.63)

1.6.3 The inner product on a null hypersurface

The conserved inner product (1.63) was defined on a spacelike hypersurface. We
will however sometimes find it convenient to consider a null hypersurface. For
example we will encounter a metric of the form

ds2 = −F (r)dudv + r2dΩ2 (1.64)

where r = r(u, v). The hypersurface defined by u = constant is null. It is
spanned by angular directions θ, φ which are spacelike, but also by the direction
v which is null. Along such a hypersurface the volume element d3ξ

√
h vanishes.

Also, the normal to the hypersurface is along the direction v which is null, so
we cannot compute the derivative along a unit normal. These two difficulties
cancel each other out, however, and we can take the limit where our spacelike
hypersurface becomes null. It is easier however to derive the conserved inner
product on null surfaces by starting again from the waveequation, which is what
we do now.

For the metric (1.64) the waveequation is

�f =
1√
−g
(
∂u
(
guv
√
−gf,v

)
+ ∂v

(
guv
√
−gf,u

)
+ ∂a

(
gab
√
−gf,b

))
= 0

(1.65)
where a, b run over the angular directions. Let us integrate f∗1�f2 over the slab
between two null hypersurfaces u = ulower and u = uupper. We assume that the
fi fall off at large v, so the only boundary terms in an integration by parts are
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from these two hypersurfaces. We have

0 =

∫
d4x
√
−g (f∗1�f2 − f2�f

∗
1 )

=

∫
dudvdθdφ f∗1 [∂u

(
guv
√
−gf2,v

)
+ ∂v

(
gvu
√
−gf2,u

)
+ ∂a

(
gab
√
−gf2,b

)
]

−
∫
dudvdθdφ f2[∂u

(
guv
√
−gf∗1,v

)
+ ∂v

(
gvu
√
−gf∗1,u

)
+ ∂a

(
gab
√
−gf∗1,b

)
]

(1.66)

The only boundary terms come from integration by parts on ∂u, and so we get

0 = Bupper −Blower (1.67)

where for any surface

B =

∫
dvdθdφ

(
f∗1 g

uv√−gf2,v − f2g
uv√−gf∗1,v

)
(1.68)

For the metric (1.64), we have

guv = − 2

F
,
√
−g =

1

2
Fr2 sin θ (1.69)

Putting in the factor i that we added in (1.63), we find the inner product
computed on a u = constant surface

(f1, f2) = i

∫
dvdΩ r2 (f∗1 ∂vf2 − f2∂vf

∗
1 ) (1.70)



TOPIC III

HAWKING’S PUZZLE: A SECOND PASS

Now that we have some understanding of general relativity and quantum field
theory, let us return to the Hawking puzzle. We will see that the puzzle arises
in the following steps:

(a) The horizon is a place where particles trajectories get ‘separated’. Parti-
cles trying to fly out from a point just outside the horizon do manage to escape
to infinity. But particles trying to fly out from a point just inside the horizon
cannot escape; they end up falling to the center of the black hole. Thus tra-
jectories that start off very close to each other get ‘pulled apart’ if they are on
opposite sides of the horizon.

(b) This pulling apart of trajectories converts a vacuum state to a state
which contains particle pairs; one member of the pair being outside the horizon
and one inside.

(c) The important point is that these particles are in an ‘entangled state’.
It is this entanglement that creates a problem near the endpoint of black hole
evaporation, as we will see.

Thus the Hawking puzzle arises from very simple and robust features of
general relativity and quantum field theory. General relativity shows us that
the horizon is a place where trajectories separate. The nature of the quantum
vacuum then implies that this vacuum will be unstable; pairs of particles will be
created, one inside the hole and one outside. The puzzle arises from the nature
of the quantum state of these particles: the two particles are entangled, instead
of having separate wavefuntions of their own. If the hole evaporats away, then
the puzzle becomes one about the state of the particles left outside as Hawing
radiation: what are these particles entangled with?

Later we will make a third pass at the puzzle, using some results from quan-
tum information theory to show that the steps above are robust against any

16
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small modifications of the physics. This will remove a large category of pro-
posed resolutions of the puzzle, that seek a way out by invoking sutble quan-
tum gravity correctons to the leading semiclassical physics used in steps (i)-(iii)
above.



Lecture notes 2

The essential physics behind pair creation

Let us begin by describing the basic physics that leads to pair creation at the
horizon of a black hole. We will first see how geodesics on the two sides of
the horizon diverge away from each other. We will then make a toy model for
the quantum vacuum, and see how this divergence of trajectories leads to the
creation of entangled particle pairs.

2.1 The divergence of trajectories at the horizon

Recall the Schwarzschild metric (??)

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2) (2.1)

We wish to consider particles that are trying to escape from the hole. The parti-
cles that can escape most easily are massless particles, moving outwards radially
at the speed of light. For such trajectories the only nonzero displacements are
dt, dr and we must have ds2 = 0. There are three cases to consider:

(i) Suppose the particle starts a little outside the horizon, at r = 2M + ε.
Then we have from ds2 = 0

dr

dt
= ±

(
1− 2M

r

)
(2.2)

To have the particle go outwards, we take the positive sign. Let us ask for the
time it takes for this particle to escape to a location rf that is away from the
horizon ∫ rf

2M+ε

dr

1− 2M
r

=

∫ T

0

dt (2.3)

This gives

T ≈ 2M log
1

ε
(2.4)

Thus the particle does ultimately escape, but the time to escape becomes large
as ε goes to zero.

(ii) Suppose the particle starts at the horizon r = 2M . Then the only way
to get ds2 = 0 is to take dr = 0, which means the particle stays at the horizon.

18
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u

rr = 2M

Figure 2.1: caption ...

(c) Suppose the particle starts a little inside the horizon, at a position r =
2M − ε We have

dr

dt
= ±

(
1− 2M

r

)
= ∓

(
2M

r
− 1

)
(2.5)

Let us compute the time for the particle to reach a position rf that is away from
the horizon 0 < rf < 2M . This needs the negative sign in the above relation,
and we find ∫ rf

2M+ε

dr
2M
r − 1

=

∫ T

0

dt (2.6)

This gives

T ≈ 2M log
1

ε
(2.7)

Thus the particle escapes the vicinity of the horizon, but again the time to
escape becomes large as ε goes to zero.

The situation is schematically shown in fig.??. We see that a small region
straddling the horizon gets stretched to a large region after we wait for a suffi-
ciently long time. In fact we can start with an arbitrarily small region

|r − 2M | < ε (2.8)

and see that after a time
t ∼ (2.9)

the region will stretch to a size ∼ M which describes the length scale of the
Schwarzschild geometry.

This persistent stretching at the horizon is what will lead to the evaporation
of the hole. While spatial slices stretch and comtract in any process in general
relativity, such deformations are usually quite limited. that is, if the length
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scale in the metric is ∼ L, then regions of size ∼ L may stretch to a size αL
with α being a factor of order unity. Further, the deformations of the spatial
slices will typically stop after a while when the metric settles down to a new
startionary state. But in the presence of a horizon, we see that the stretching
can be arbitrarily large, and does not stop as long as the horizon exists.

Our next question is: what is the consequence of this stretching?
We have seen in section ?? that the quantum fields on spacetime can be

described by a set of coupled harmonic oscillators. When a slice stretches, the
distance between neighboring points increases. This makes the coupling between
the corresponding oscillators weaker. This change of coupling can convert a
vacuum state of the oscillators to a state that contains pairs of excitations.
But excitations of the oscillators describing the quantum field correspond to
particles. Thus we will find that the stretching of slices seen above will lead to
the creation of particle pairs from the vacuum.

We will study this phenomenon of pair creation in three steps:

(i) We will first consider a single harmonic oscillator. We start in the ground
state of this oscillator. At some time t = 0, we change the frequency of this os-
cillator. We then see how the state of the oscillator contains pairs of excitations
above the vacuum.

(ii) We then make a toy model of the situation we will encounter with the
black hole. We consider two oscillators, one on each side of the horizon. These
oscillators will be coupled to each other, the way neighboring oscillators are
coupled in quantum field theory, and we will let the initial state of the system
be the ground state of the coupled oscillator pair. We have seen above that
geodesics on the two sides of the horizon separate away from each other. We will
model this effect by removing the coupling between the oscillators at some time
t = 0. We will find that the two oscillators will now have pairs of excitations,
and the overall states will be entangled between the two oscillators. This state
has all the features of the full quantum problem that will be relevant to the
information paradox, so this is a useful toy model.

(c) Finally we will set up the problem of Hawking radiation in the black hole
metric, using the 1+1 dimensional case for simplicity. We will present details
of the computations in the appendix.

2.2 Pair creation for a single harmonic oscillator

We will solve this simple case in two ways: first, in the Schrodinger picture,
where the physics is a little clearer, and second, in the Heisenberg picture,
which makes the computations simpler in the general case that we will find in
field theory.
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2.2.1 Sudden frequency change: Schrodinger picture
Consider the Lagrangian of a harmonic oscillator with frequency ω.

L =
1

2
φ̇2 − 1

2
ω2φ2 (2.10)

where we have called the position variable φ, in line with the fact this this
variable will be analogous to the value of the scalar field in the full problem. We
can write φ and its conjugate momentum π in terms of creation and annihilation
operators

φ̂ =
1√
2ω

(â+ â†)

π̂ = = −i
√
ω

2
(â− â†) (2.11)

The vacuum state |0〉a of the oscillator is defined by

â|0〉a = 0 (2.12)

We assume that for times t < 0 the oscillator is in its vacuum state |0〉a. At
time t = 0 the frequency of the oscillator is suddenly changed from ω to a dif-
ferent value ω̃. The state of the oscillator, however, cannot change immediately.
This is because the state evolves according to the Schrodinger equation

i
∂ψ

∂t
= Ĥψ (2.13)

so that for infinitesimal ε we have

ψ|t=ε − ψ|t−ε = −i(2ε)Ĥψ (2.14)

For our Ĥ and ψ = |0〉a, the state Ĥψ has finite norm. Thus in the limit ε→ 0
we find that ψ does not suddenly change at t = 0 when we change the frequency
of the oscillator.

The operators φ̂, π̂ = −i∂/∂φ do not change when we change the Hamil-
tonian. But their expressions in terms of the new creation and annihilation
operators does change. Let the creation and annihilation operators for the os-
cillator with frequency ω̃ be b̂, b̂†. Then we have

φ =
1√
2ω̃

(b̂+ b̂†)

π = −i
√
ω̃

2
(b̂− b̂†) (2.15)

Comparing with (2.11), we find after a little algebra

â = αb̂+ βb̂† (2.16)
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with

α =
1

2

(√
ω

ω̃
+

√
ω̃

ω

)
(2.17)

β =
1

2

(√
ω

ω̃
−
√
ω̃

ω

)
(2.18)

Our chosen state at t = 0 was |0〉a; this state was defined by the relation
(2.12). We can write this relation as(

αb̂+ βb̂†
)
|0〉a = 0 (2.19)

If however we take our creation and annihilation operators as b̂, b̂†, the we would
define a vacuum state |0〉b through the relation

b̂†|0〉b = 0 (2.20)

We see that our initial state |0〉a is not the same state |0〉b which would be called
the vacuum for the oscilaltor at times t > 0. We noted above that the state
itself does not suddenly change at t = 0 when we change the frequency of the
oscillator from ω to ω̃. Thus when we cross the time t = 0 we should write our
state |0〉a as a linear combination of basis states for the oscillator with frequency
ω̃; the subsequent evolution of the state will be through the phase e−iEnt for
basis states with different energies En.

The states |n〉b with n = 0, 1, 2, . . . form a complete basis of the Hilbert
space, where |n〉b is the nth excited level of the oscillator with frequency ω̃.
Thus we can write |0〉a as a linear sum over this basis. It turns out the the
linear sum is given by an elegant ansatz of the form

|0〉a = Ce
1
2γb
†b† |0〉b (2.21)

where C is a normalization constant. To find the coefficient γ appearing in this
expansion, we note the relation We have

be
1
2γb
†b† |0〉b = γb†e

1
2γb
†b† |0〉b (2.22)

This relation can be checked by expanding the exponentials in series, and using
the commutation relation [b̂, b̂†] = 1. Then we find

γ = −β
α

= − ω̃ − ω
ω̃ + ω

(2.23)

C = (2.24)
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2.2.2 Analyzing the relation (2.21)

2.2.3 The Heisenberg picture for a single oscillator

Let us now redo the problem of pair creation for a single oscillator in the Heisen-
berg picture; this is the picture that will is more convenient to use for quantum
fields on curved spacetime. The Heisenberg operator φ̂(t) is defined in terms of
the operator φ̂ as

φ̂(t) = eiĤtφ̂e−iĤt (2.25)

We can expand φ̂(t) in terms of creation and annihilation operators

φ̂(t) = f(t)â+ f∗(t)â† (2.26)

We have put the time-dependence in the functions f, f∗, while the operators
â, â† are time indpendent. The state |ψ〉 does not evolve in the Heisenberg
picture, and the action of â, â† on a state will give rise to other states which will
also not evolve with t.

The operator φ̂(t) should satisfy the field equation (2.10) for the harmonic
oscillator; this implies that f, f∗ should satisfy this equation as well. For an
oscillator with fixed frequency ω, a basis of solutions is

e−iωt, eiωt (2.27)

To find the linear combinations that must appear in (2.26), we compute a 2-point
correlator: we start with the vacuum |0〉a, created an excitation by applying
φ̂(t1), and then annihilate this excitation to return to the vacuum by applying
φ̂(t2):

a〈0|φ̂(t2)φ̂(t1)|0〉a = a〈0|
(
f(t2)â+ f∗(t)2)â†

) (
f(t1)â+ f∗(t1)â†

)
|0〉a

= f(t2)f∗(t1) (2.28)

We require that the state that propagates begtween t1 and t2 have positive
energy; i.e., it should evolve as e−iEt with E ≥ 0. We will call such functions
positive frequency. We find that we must have

φ̂(t) = Ce−iωtâ+ C∗eiωtâ† (2.29)

which gives
f(t2)f∗(t1) = |C|2e−iω(t2−t1) (2.30)

To fix C, we note the commutation relation between φ̂(t) and π̂ = d/dtφ̂(t):

[φ̂(t), π̂(t)] = i (2.31)

This gives

φ̂(t) =
1√
2ω
e−iωtâ+

1√
2ω
eiωtâ† (2.32)
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The value of C can be alternatively chacterized as a normalization of f . Define
the inner product between two functions of t

(h1, h2) = i
(
h∗1ḣ2 − ḣ∗1h2

)
(2.33)

If h1, h2 satisfy the equation (2.10) for the oscillator, then this inner product is
independent of t, since it is proprtional to the Wronskian of two solutions. We
find that

(f, f) = 1, (f∗, f∗) = −1, (f, f∗) = 0 (2.34)

Thus the inner product is not positive definite: the positive frequency function
f has positive norm while the negative frequency function f∗ has negative norm.

2.2.4 Pair creation in the Heisenberg picture
Let us return to our problem where the frequency of then oscillator is ω for
t < 0 and ω̃ for t > 0. We again write φ̂t) in the form (2.26). The equation for
f is now

f̈ + ω2f = 0, t < 0

f̈ + ω̃2f = 0, t > 0 (2.35)

For times t < 0 it is natural to think of states as being defined over the vacuum
|0〉a. Thus we use modes f that agree with (2.32) at t < 0

f =
1√
2ω
e−iωt, t < 0

f = a1e
−iω̃t + a2e

iω̃t, t > 0 (2.36)

where the constants a1, a2 are determined by the requirement of continuity at
t = 0

f(0−) = f(0+), ḟ(0−) = ḟ(0+) (2.37)

For times t > 0 it is natural to think of states as being defined over a vacuum
|0〉b, which is defined using the creation and annihilation operators b̂, b̂† for an
oscillator with frequency ω̃. Calling the relevant function g instead of f , we
have

g = a3e
−iωt + a4e

iωt, t < 0

g =
1√
2ω̃
e−iω̃t, t > 0 (2.38)

where the constants a3, a4 are again determined by the requirement of continuity
at t = 0

g(0−) = g(0+), ġ(0−) = ġ(0+) (2.39)

We now have two ways to write the field operator φ̂(t):

φ̂(t) = f(t)â+ f∗(t)â† (2.40)
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φ̂(t) = g(t)b̂+ g∗(t)b̂† (2.41)

Thus we get the relation

f(t)â+ f∗(t)â† = g(t)b̂+ g∗(t)b̂† (2.42)

Our goal is to relate the operators â, â† to the operators b̂, b̂†. Let us take
the inner product (2.33) of both sides with f ; i.e, we compute (f, ·) on both
sides. We get

â = (f, g)b̂+ (f, g∗)b̂† (2.43)

Since f, f∗, g, g∗ are all solutions of the same second order differential equation,
the inner product is again independent of t. In general we would need to find
the explicit form of f, g by finding the constants a1, . . . a4, but in the present
case of ‘sudden change of frequency’ we have a shortcut: we can compute the
inner products at t = 0. The inner product involves only the value and first
derivative of the functions, and these quantities are the same at t = 0− and
t = 0+. Thus we can use the expression for f for t < 0 (where it is simpler) and
the expression for g for t > 0 (where it is simpler). We find

(f, g) =
(ω̃ − ω)√
2ω
√

2ω
≡ α

(f, g∗) = − (ω̃ + ω)√
2ω
√

2ω
≡ β (2.44)

so that
â = αb̂+ βb̂† (2.45)

We see that we get the same relation as (??). The rest of the computation as
before, leading to the relation (??).

2.3 Toy model of Hawking evaporation

Consider again the depiction of the black hole in fig.??. We have a horizon, and
geodesics on different sides of this horizon diverge away from each other.

To see the effect of this divergence, consider a scalar field φ living on this
spacetime. In fig.?? we depict wavemodes fL and fR on the left and right sides
of the horizon respectively. An occupation number nL = 0 for fL means that
there is no particle in the mode fL, an occupation number nL = 1 means there
is one particle in mode fL, and so on. Similarly we can populate mode fR with
the possibilities nR = 0, 1, 2, . . . .

Given our picture of quantum field theory, we can represent the mode fL as
a harmonic oscillator, and nL is the excitation level of this oscillator. Similarly,
the mode fR corresponds to a second harmonic oscillator, with excitation level
nR. Let each oscillator have frequency ω.

In fig.?? we depict these oscillators on two time slices. On the ‘earlier’
time slice the modes fL, fR are close to each other, and their corresponding



26LECTURE NOTES 2. THE ESSENTIAL PHYSICS BEHIND PAIR CREATION

oscillators should be coupled. At late times, the modes are far from each other,
and the corresponding oscillators should be almost decoupled. Let the variable
describing the left oscillator be φL and the variable describing the right oscillator
be φR. We make a toy model of the physics by letting the oscillator be coupled
for t < 0 and decoupled for t > 0. Thus the Lagrangian is

L =
1

2
φ̇2
L +

1

2
φ̇2
R −

1

2
ω2φ2

L −
1

2
ω2φ2

R − aφRφL, t < 0

=
1

2
φ̇2
L +

1

2
φ̇2
R −

1

2
ω2φ2

L −
1

2
ω2φ2

R, t > 0 (2.46)

2.3.1 The state for t < 0

We can decouple these two oscillators by going to a new basis

φ1 =
1√
2

(φL + φR), φ2 =
1√
2

(φL − φR) (2.47)

which gives two uncoupled oscillators with frequencies

φ1 : ω1 =
√
ω2 + a, ω2 =

√
ω2 − a (2.48)

The oscillator with variable φ1 has creation and annihilation operators â1, â
†
1 and

The oscillator with variable φ1 has creation and annihilation operators â2, â
†
2.

We wish match our notation as closely as possible to the notation we have
used for decoupling oscillators in quantum field theory. Instead of an infinite
line of points where the field φ was defined, we now just have two points. In
place of the functions f(t, x) at timne t on this line x, we now have a function
of t defined on two points. We write functions on this 2-point space using a
2-component vector (a, b), with a corresponding to φL and b corresponding to
φR. We define two component functions

f1 =
1√
2ω1

e−iω1t
1√
2

(1, 1), f2 =
1√
2ω2

e−iω2t
1√
2

(1,−1) (2.49)

The inner product between modes f, g is

(f, g) = i[f∗ · ∂tg − ∂tf∗ · g] (2.50)

The above modes are normalized as

(fi, fj) = δij , (f∗i , f
∗
j ) = −δij , (f∗i , fj) = 0 (2.51)

Now consider the ‘field operator’

φ̂ = (φ̂1, φ̂2) (2.52)

Since the oscillators have been decoupled in the φ1, φ2 basis, we can expand the
field operator just the way we did for a single oscillator

φ̂ = f1â1 + f∗1 â
†
1 + f2â2 + f∗2 â

†
2 (2.53)

We start with the vacuum state for these coupled oscillators

â†i |0〉a = 0, i = 1, 2 (2.54)
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2.3.2 Evolution for t > 0

At the late time slice, the modes fL, fR are well separated, and the coupling
between them is weak. We have modeled this by letting the oscillators corre-
sponding to these modes be decoupled for t > 0. The analogue of the modes
(2.49) is

g1 =
1√
2ω
e−iωt(1, 0), g2 =

1√
2ω
e−iωt(0, 1) (2.55)

Note that

(gi, gj) = δij , (g∗i , g
∗
j ) = −δij , (g∗i , gj) = 0 (2.56)

The same field operator φ̂ can be written as

φ̂ = g1b̂+ g∗1 b̂
† + g2ĉ+ g∗2 ĉ

† (2.57)

Thus we have

f1â1 + f∗1 â
†
1 + f2â2 + f∗2 â

†
2 = g1b̂+ g∗1 b̂

† + g2ĉ+ g∗2 ĉ
† (2.58)

2.3.3 Matching at t = 0

As we did in the case of the single oscillator in the Heisenberg picture, we
wish to express the conditions (2.54) (which define our state |0〉a) as conditions
involving the oscillators b̂, b̂†, ĉ, ĉ†. This will then allow us to express the state
|0〉a in terms of b̂†, ĉ† excitations.

We take the inner product (g1, ·) on both sides of (2.58). This gives

b̂ = (g1, f1)â1 + (g1, f
∗
1 )â†1 + (g1, f2)â2 + (g1, f

∗
2 )â†2

=
ω + ω1

2
√

2
√
ωω1

â1 +
ω − ω1

2
√

2
√
ωω1

â†1 +
ω + ω2

2
√

2
√
ωω2

â2 +
ω − ω2

2
√

2
√
ωω2

â†2

ĉ = (g2, f1)â1 + (g2, f
∗
1 )â†1 + (g2, f2)â2 + (g2, f

∗
2 )â†2

=
ω + ω1

2
√

2
√
ωω1

â1 +
ω − ω1

2
√

2
√
ωω1

â†1 −
ω + ω2

2
√

2
√
ωω2

â2 −
ω − ω2

2
√

2
√
ωω2

â†2

(2.59)

While we can find the state 0〉a in terms of b̂†, ĉ† for any value of the coupling
a, the algebra is a little simpler for a � ω2. In this limit we have, keeping the
leading order expression for each term

ω1 ≈ ω +
a

2ω
, ω2 ≈ ω −

a

2ω
(2.60)
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Then we have for the operators and their conjugates

b̂ ≈ 1√
2
â1 −

a

4
√

2ω2
â†1 +

1√
2
â2 +

a

4
√

2ω2
â†2

ĉ ≈ 1√
2
â1 −

a

4
√

2ω2
â†1 −

1√
2
â2 −

a

4
√

2ω2
â†2

b̂† ≈ 1√
2
â†1 −

a

4
√

2ω2
â1 +

1√
2
â†2 +

a

4
√

2ω2
â2

ĉ† ≈ 1√
2
â†1 −

a

4
√

2ω2
â1 −

1√
2
â†2 −

a

4
√

2ω2
â2

(2.61)

Now we note that the combination

b̂+
a

4ω2
ĉ† (2.62)

has only annihilation operators â1, â2. Thus(
b̂+

a

4ω2
ĉ†
)
|0〉a = 0 (2.63)

which has the solution

|0〉a = Ce−
a

4ω2 b̂
†ĉ† |0〉b ⊗ |0〉c (2.64)

Thus we see that if we have two oscillators with the same frequency, weakly
coupled together, and then we remove the coupling suddenly, then the ground
state of the initial system becomes an entangled state of the two uncoupled
oscillators.

2.4 The entangled nature of the state (2.64)

We can expand the exponential in (2.64) to find

|0〉a = C

[
|0〉b ⊗ |0〉c −

( a

4ω2

)
|1〉b ⊗ |1〉c +

( a

4ω2

)2

|2〉b ⊗ |2〉c + . . .

]
(2.65)

Let us note the physical picture of black hole evaporation captured by a state
of this kind. Hawking evaporation is a quantum process. This if we consider
a given time interval, then there are probabilities for different events to occur
during that interval. There is some probability that no particle is emitted; this
is captures by the first term on the RHS of (2.65) which has the factor |0〉b. But
this factor comes along with the factor |0〉c, which tells us no particle falls into
the interior of the hole either. This makes sense: the particles were created in
pairs, so if no particle is emitted in mode b, then no particle in falls into the
hole in the corresponding mode c. The probability for this eventuality – that of
no particles being produced – is given by

P00 = |C|2 (2.66)
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The second term on the RHS (2.65) says that 1 particle is emitted in mode b,
and correspondingly, 1 particle falls into the hole in mode c. The probability
for this occurrence is

P11 = |C|2
( a

4ω2

)2

(2.67)

The next term has two particles in each mode, and so on.
States of the form (2.65) are said to be entangled between the systems b and

c: the choice of state for the system b is dependent on the choice of state of
system c. By contrast, a ‘factored’ state would have no relation between the
states in systems b and c. Examples of factored states are

|0〉b ⊗ |0〉c, |0〉b ⊗ |1〉c,
1√
2

(|0〉b + |1〉b)⊗
1√
2

(|0〉c + |1〉c) (2.68)

The essential issue with our entangled state (2.65) can be captured by taking a
simpler entangled state which has just two terms in the sum

|ψ〉 =
1√
2

(|0〉b|0〉c + |1〉b|1〉c) (2.69)

We will work with this simpler state ψ〉 in the discussion below.

The widespread occurrence of entangled states

Entangled states are found very often in nature. Consider two electrons, labelled
1 ad 2. The states of each electron can be described by using a basis where the
z spin is ± 1

2 ; let us call these states |±〉1, |±〉2.
Suppose the two electrons are in a singlet state; i.e., a state with overall spin

0

|ψ〉singlet =
1√
2

(|+〉1|−〉2 − |−〉1|+〉2) (2.70)

This is an entangled state since the spin of electron 1 is dependent on the spin
of electron 2. Electron 1 does not have a definite state by itself: it is spin up if
electron 2 has spin down and it has spin down if electron 2 has spin up.

More generally, entangled states are created by interactions. If a particle
p is interacting with several other particles, then after some time the state of
p will become entangled with the state of the reming system described by the
other particles.

Thus in quantum theory, entangled states are more the norm than the excep-
tion. But as we will now see, the entanglement created by black hole evaporation
leads to a serious problem for quantum theory.

Entanglement in the evaporating hole

We proceed in the following steps:

(i) Start with a ball of matter, in some state Ψ〉A. This is the matter (which
we had earlier termed ‘A’), which will collapse and make the hole. While this
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matter A could have been entangled with some other system somewhere else, it
is simplest to assume that there is no such entanglement; thus Ψ〉A is what is
called a ‘pure’ state.

(ii) Now let A collapse to make a black hole. The hole is in a pure state
characterized by A; let us call this state Ψ̃〉A.

(iii) Now suppose a pair is created out of the vacuum by the Hawking process.
Let us model the state of this pair by the simplified state (2.69):

|ψ〉 =
1√
2

(|0〉b1 |0〉c1 + |1〉b1 |1〉c1) (2.71)

where we have added a subscript ‘1’ to the modes b, c to indicate that these
modes correspond to the first pair that will be emitted from the hole. Imagine
dividing spacetime into two regions:

The outer region: The region outside the hole. For concreteness, let this
be the region r > 10M , where we are away from any effects that might be
particular to the region near the horizon.

The inner region: This is the region r < 10M , containing the hole and its
vicinity.

We see that the state in the outer region is entangled with the state in the
inner region, due to the entanglement in (2.69). The state of b1, c1 does not
depend on the details of the state of the matter A which made the hole.

(iv) Now consider the emission of a second pair from the vacuum. The state
of this pair is

|ψ〉 =
1√
2

(|0〉b2 |0〉c2 + |1〉b2 |1〉c2) (2.72)

Thus the members of the second pair are entangled with each other, but they
are not related to the initial matter of the hole A or the members of the first
pair. The overall state in the outer region is now ‘more’ entangled with the state
in the inner region; we will note how to define the amount of this entanglement
in section ??.

(v) After N steps of emission, the overall state is

|Ψ〉 = |Ψ̃〉A ⊗
1√
2

(
|0〉b1 |0〉c1 + |1〉b1 |1〉c1

)
⊗ 1√

2

(
|0〉b2 |0〉c2 + |1〉b2 |1〉c2

)
. . .

⊗ 1√
2

(
|0〉bN |0〉cN + |1〉bN |1〉cN

)
(2.73)
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The state in the outer region is now very heavily entangled with the state in the
inner region. This is still not a problem however; any many-particle quantum
system will typically be highly entangled with other systems that it is able to
interacted with.

(vi) The problem comes from the curious nature of gravity: that it is at-
tractive. This gives the potential energy a negative sign, and we have seen that
the net energy of the initial matter A together with the infalling particles {ck}
keeps going down with each emission. The black hole shrinks towards a situation
where it has zero mass. The simplest assumption – and the one that Hawking
made in 1975 – is that the black hole evaporates away to nothing, giving us the
vacuum state at r = 0.

The mass M of the initial matter A is now in the Hawking radiation quanta
{bk}. So energy is conserved; which is satisfying. But the problem comes when
we ask: what is the state of the quanta {bk}?

The quanta {bk} had no definite state by themselves; their state was defined
in conjunction with their partners {ck}. Thus the state in the mode b1 was |0〉b1
if the state in the mode c1 was |0〉c1 , and the state in the mode b1 was |1〉b1
if the state in the mode c1 was |1〉c1 . But if the quanta in the mode c1 have
disappeared from the universe, then what is the state in the mode b1?

This is the crux of the information paradox. If we cannot assign a state to the
quanta in the modes {bk}, then we have a violation of quantum theory, where
the universe must be described by a state Ψ〉(t) at all times. We started with
matter A described by a definite state |Ψ〉A, but at the end of the evaporation
process we are left with quanta {bk} which cannot be assigned a state. Thus the
process of black hole formation and evaporation cannot be captured by normal
quantum evolution, which takes states to other states

|Ψ〉f = e−iĤt|Ψ〉i (2.74)

2.4.1 States vs density matrices

The above conclusion is startling, so let us take a moment to explore it in more
detail.

Consider again the state (2.70) of two electrons in an overall singlet state

|ψ〉singlet =
1√
2

(|+〉1|−〉2 − |−〉1|+〉2) (2.75)

Neither electron has a state by itself; this is an entangled state of the two
electrons. Now suppose electron 1 were to disappear from the universe. Could
we assign any state to electron 2?

One might think that we could just delete all reference to the state of electron
1, getting the state

|ψ〉singlet →
1√
2

(|−〉2 − |+〉2) (2.76)
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for electron 2. This looks like a sensible state; it is an eigenstate of the Pauli

matrix σ1 =

(
0 1
1 0

)
with eigenvalue −1, so it represents a spin for electron 2

pointing in the direction −x̂.
But there is a problem with this procedure. We could have chosen a slightly

different basis for the states of electron 1

|+〉1 → |+〉1, |−〉1 → eiθ|−〉1 (2.77)

The singlet state (2.75) would now be written as

|ψ〉singlet =
1√
2

(
|+〉1|−〉2 − e−iθ|−〉1|+〉2

)
(2.78)

If we now delete all reference to electron 1, we find

|ψ〉singlet →
1√
2

(
|−〉2 − e−iθ|+〉2

)
(2.79)

This is not the same as the state (2.76). For example, for θ = π/2, we get

an eigenstate of the Pauli matrix σ2 =

(
0 −i
i 0

)
with eigenvalue −1, so it

represents a spin for electron 2 pointing in the direction −ŷ.
Thus we see that the structure of quantum mechanics does not allow us to

delete all reference to one particle of an entangled pair, and obtain a unique
state for the remaining particle.

If we cannot get a state for electron 2, is there anything that we can say
about it? In the initial state (2.75) there was one thing we could say about
electron 2 by itself: the probability for it to have spin |+〉

P 1
2

=

∣∣∣∣ 1√
2

∣∣∣∣2 =
1

2
(2.80)

and the probability for it to have spin |−〉 was P− 1
2

= 1
2 as well. If we some-

how ‘delete’ spin 1 from our universe, then the states (2.79) still have the the
probabilities P± 1

2
= 1

2 , regardless of the value of θ; i.e., regardless of how we
chose the basis of states for electron 1. If we can specify only the probabilities,
and not the actual state for an electron, then we say that the electron is de-
scribed by a density matrix rather than a quantum state. We will see a detailed
mathematical description of density matrices later.

Let us return to entangled state (2.73) of the black hole. If the hole evapo-
rates away leaving only the quanta in modes {bk}, then we cannot have a state
for the {bk}, but we can have probabilities for various possible states. Since each
mode bk can be in the states 0 or 1, there are 2N possible states for the modes
{bk}, with each state labelled by a sequence of 0s and 1s; e.g. 0100010 . . . 011.
From (2.73) we see that the probabilities for each of these states is the same

P000...00 =
1

2N
, . . . P011...01 =

1

2N
, . . . P111...11 =

1

2N
(2.81)
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This information about probabilities is described by the density matrix of the
set {b}. The density matrix clearly has less information than a quantum state;
any state of the form

|Ψ〉b =
1

2
N
2

(
eiθ1 |000 . . . 00〉+ . . . eiθn |011 . . . 01〉+ . . . eiθ2N |111 . . . 11〉

)
(2.82)

has the probabilities (2.81). Thus we lose the phase information contained in
the θk when we go from a state to a density matrix.

In the process of particle scattering, the usual quantum evolution (2.74) is
described by an ‘S-matrix’. This S-matrix is unitary

S† = S−1 (2.83)

Hawking proposed that in a theory with gravity, there is no S-matrix, and thus
no unitarity; all we can have is a ‘Dollar matrix’ $ which describes the evolution
of density matrices. This of course is a radical change in the foundations of
quantum theory, and caused much consternation. It also lead people to consider
the idea of remnants.

2.4.2 Remnants, and their difficulties
Given the seriousness of the problem caused by the complete evaporation of
the hole, one may try to say that the evaporation stops when the hole reaches
planck scale. When the hole is much larger than planck scale, the semiclassical
approximation would appear to be valid, and then the separation of geodesics
at the horizon continues to give the creation of entangled particle pairs. But
when the hole is planck size, then new quantum gravity effects may creep in,
and somehow stop the further evaporation of the hole towards the vacuum.

The planck sized object that is left if the evaporation of the hole stops is
called a remnant. This remnant must contain the initial matter A, as well as
all the negative energy quanta in the modes {ck}. With this situation, there
is no problem with the quantum mechanics as such, since we have not lost the
wavefunction of the matter A, and we have retained all members of the entangled
sets {b}, {c}. The difficulties with remnants all stem from the question: how
can such a small remnant hold all these quanta?

One might try to bypass this problem by postulating that all the quanta
involved in A, {c} get crushed to a unique state |ψ〉remnant inside the hole, and
this state is characterized by a small spatial extent (∼ lp) and small energy
(∼ mp). But this would be a violation of quantum mechanics. The full state
|Ψ〉 (2.73) had a large entanglement between the exterior region and what is in
the hole. More precisely, the state |Ψ〉 has the form

|Ψ〉 =
1

2
N
2

2
N
2∑

i=1

|χi〉|ψi〉 (2.84)

where |χi〉 are orthonormal states in the interior and |ψi〉 are orthonormal states
in the exterior. Now it is true that we do not know the nature of the evolution
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in the interior when the hole reaches planck size. But under a unitary evolution
(2.74), orthonormal states evolve to orthonormal states. Thus any evolution
inside the hole can only produce a change of the form

1

2
N
2

2
N
2∑

i=1

|χi〉|ψi →
1

2
N
2

2
N
2∑

i=1

|χ′i〉|ψi (2.85)

where the |χ′i〉 again form a 2N dimensional set of orthonormal states. Thus the
remnant must have at least 2N possible internal states. But N can be as large
as we want: if we start with larger and larger holes and let them evaporate down
to planck size, then we get larger and larger values of N in (2.73). Thus we
should be able to have infinitely many states possible for planck sized remnants.



Lecture notes 3

Particle creation in black holes

3.1 The full structure of the classical black hole

We have seen that Hawking radiation arises because the vacuum around the
horizon is unstable to the production of particle pairs. This instability, in turn
arises from the fact that particle trajectories of the two sides of the horizon
get ‘pulled apart’: a trajectory starting just outside the horizon can escape to
infinity, while a trajectory starting just inside must fall to the center of the hole.
The simplest trajectories are the radial trajectories of particles moving at the
speed of light. Our goal is to write the metric in a form where we can study
such trajectories easily, both outside and inside the horion. This form of the
metric is achieved by going to Kruskal coordinates, which allow us to see the
entire geometry of the classical black hole metric.

The physics of light rays is best seen in null coordinates. In flat 1+1 dimen-
sional Minkowski space

ds2 = −dt2 + dx2 (3.1)

we can define the‘null coordinates

u = t+ x, v = t− x (3.2)

A lightlike trajectory moving left is given by u = constant and one moving right
is given by v = constant. Let us now look for similar coordinates for the black
hole.

Our Schwarzschild metric is

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2) (3.3)

We write this as

ds2 = (1− 2M

r
)

[
−dt2 +

dr2

(1− 2M
r )2

]
+ r2(dθ2 + sin2 θdφ2) (3.4)

It is useful to define a new coordinate r∗ by

dr∗ =
dr

(1− 2M
r )

(3.5)

which gives
r∗ = r + 2M ln(

r

2M
− 1) (3.6)

35
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where we have set the arbitrary additive constant to zero. Clearly this definition
is singular at r = 2M , so let us restrict attention for the moment to the region
outside the hole r > 2M . The metric is now

ds2 = (1− 2M

r
)
[
−dt2 + dr∗2

]
+ r2(dθ2 + sin2 θdφ2) (3.7)

We can again define null coordinates

u = t+ r∗, v = t− r∗ (3.8)

Consider a null geodesic falling radially into the hole. Thus θ, φ are constant,
and the worldline will be given by solving ds2 = 0 in the (t, r∗) space. At infinity
where the metric is flat the ingoing geodesic is t + r = const.. From (3.9) we
see that taking into account the metric of the hole changes this to

t+ r∗ ≡ u = u0 (3.9)

Similarly, a radially outgoing null ray is given by

t− r∗ ≡ v = v0 (3.10)

3.1.1 Coordinate ranges

Let us now look at the ranges of the coordinates u, v. For the radial coordinate,
we see from (3.6) that the range r = (2M,∞) maps to r∗ = (−∞,∞).

Now consider the null geodesics (3.9) falling radially into the hole. By taking
geodesics starting from a given r∗ with different values of t we can cover the full
range

−∞ < u0 <∞ (3.11)

Similarly, for radially outgoing geodesics, we can cover the full range

−∞ < v0 <∞ (3.12)

Suppose an observer starts outside the black hole, and decides tp fall into
the hole. At some future time, he will pass through the horizon of the hole. The
spacetime points where such observers cross the horizon are define the ‘future
horizon’. For an infa;;ing trajectory u = u0, we have

v = t− r∗ = u0 − 2r∗ (3.13)

As the observer approaches the horizon, we see that v → ∞. Thus the future
horizon is given by the points

−∞ < u <∞, v =∞ (3.14)
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3.1.2 Defining Kruskal coordinates
From (3.14) we see that our coordinates (u, v) ‘end’ at the horizon. We have
already noted, however, the the horizon is actually a regular place in the classical
black hole, and we should be able to smoothly pass to a region interior to this
horizon. To see the horizon as a normal place in our manifold, we would like
to have coordinates that are smooth at the horizon. In particular, we need the
horizon to appear at finite values of our coordinates, unlike (3.14). To achieve
this, we write

U = eαu, V = −e−αv (3.15)

where we will choose the constant α later. Assuming α > 0, we see that the
region outside the horizon is

U > 0, V < 0 (3.16)

and the horizon itself is
0 < U <∞, V = 0 (3.17)

Thus we have brought the horizon to a finite position in our new coordinates
U, V , and if the metric is smooth at U = V = 0 then we can continue the
spacetime past the region (3.16).

Let us now see if the coordinates U, V can be made smooth at the horizon.
From (3.15) we get

dU = αeαudu, dV = αe−αvdv (3.18)

Thus the metric (3.9) becomes

ds2 = −(1− 2M

r
)
e−α(u−v)

α2
dUdV +r2dΩ2

2 = − (r − 2M)

r

e−α(u−v)

α2
dUdV +r2dΩ2

2

(3.19)
Now note that

e−α(u−v) = e−2αr∗ = e−2α[r+2M ln( r
2M−1)] = e−2αr

(
2M

r − 2M

)4αM

(3.20)

We now see that if we choose
α =

1

4M
(3.21)

then we cancel the factor r − 2M in (3.19), getting

ds2 = −32M3

r
e−

r
2M dUdV + r2dΩ2 (3.22)

The metric is now written in coordinates U, V, θ, φ. The variable r should now
be thought of as a function r(U, V ), given through the transcendental relation

UV = −(
r

2M
− 1)e

r
2M (3.23)

Since we do not need the explicit form of this function for our analysis, we leave
it as the symbol r in most of our expressions below.
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3.2 The extended black hole spacetime

The Schwarzschild metric (3.3) described the region outside the horizon

−∞ < t <∞, 2M < r <∞ (3.24)

This region is covered by the Kruskal coordinates

U = (
r

2M
− 1)

1
2 e

r
4M e

t
4M

V = −(
r

2M
− 1)

1
2 e

r
4M e−

t
4M (3.25)

with
U > 0, V < 0 (3.26)

Let us now look at the spacetime we get when we continue to other values
of U, V :

(i) First we note that the location r = 0 is a real singularity of the metric; the
curvature diverges as r → 0, and so we cannot remove the singularity here by a
change of coordinates. From (3.23) we see that r = 0 corresponds to UV = 1.
Thus the singularity lies on two surfaces

U > 0, V > 0, UV = 1 : future singularity

U < 0, V < 0, UV = 1 : past singularity (3.27)

We depict these surfaces as hyperbolae on the U, V plane in fig.??.

(ii) Since we cannot continue past the singularity at UV = 1, we will restrict
ourselves to the region UV < 1. We now note that the metric (3.22) and the
expression (3.23) for r(U, V ) are symmetric under the interchange U ↔ V . The
region (3.26) described the exterior of the hole, stretching from the horizon
r = 2M to asymptotic infinity. We can get a second copy of such a region, from
the range

U < 0, V > 0 (3.28)

Thus the wedge on the left in fig.?? describes a second asymptotic infinity.

(iii) We have seen in (3.17) that a future horizon is located at

0 < U <∞, V = 0 (3.29)

By the symmetry under U ← V , we get another future horizon at

0 < V <∞, U = 0 (3.30)

Now consider the surfaces

−∞ < U < 0, V = 0 (3.31)
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and
−∞ < V < 0, U = 0 (3.32)

We will call these surfaces the ‘past horizons’. The future horizons were surfaces
across which particles could not emerge from the hole to the exterior. For the
past horizons, we see from fig.?? that no particle can fall through these surfaces
into the hole from the exterior.

The wedge bounded by the future singularity and the future horizons is a
black hole: particles can fall into this wedge but not emerge out. The wedge
bounded by the past singularity and past horizons is called a ‘white hole’: par-
ticles can emerge from this wedge, but not go in.

The spacetime obtained above is called the fully extension of the Schwarzschild
metric. As we will see later, it is also called the ‘extremal black hole’. We can
introduce Schwarzschild like coordinates to cover each of the four wedges of
this fully extended diagram. For example, for the future wedge, we define the
coordinate r∗ as

dr̃∗ = − dr

( 2M
r )− 1

(3.33)

which gives
r̃∗ = r + 2M ln(1− r

2M
) (3.34)

Define
ũ = r̃∗ + t̃, ṽ = r̃∗ − t̃ (3.35)

and
U = e

ũ
4M , V =

ṽ

4M
(3.36)

Then the metric (3.22) becomes

ds2 = (
2M

r
− 1)dt̃2 − dr2

2M
r − 1

+ r2dΩ2 (3.37)

so we get Schwarzschild the coordinates inside the horizon with t̃ now being
spacelike and r being timelike.

This extended metric has several remarkable features. For one thing, we
found a white hole along with the black hole. This is not too surprising, since
the Schwarzschild metric (3.3) that we started with was symmetric under the
reflection of the time direction t → −t. If the full extension of the metric
described a black hole from which nothing could come out, then we should also
find a region into which nothing can go in.

The extended black hole metric describes a vacuum spacetime; i.e., there
is no matter anywhere in the region r > 0. One can imagine that the actual
spacetime will be quite different if we made the black hole by starting with
a ball of matter and letting it collapse to r = 0. collapsing a ball of matter.
For example, the white hole region has a singularity in the past. If we start
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with initial conditions that were nonsingular, then we would not have this past
singularity, and perhaps no while hole region.

The other remarkable feature of the extended metric is the appearance of
second asymptotic infinity – the left wedge. Again, this is not something we
would expect if we made a black hole by collapsing a ball of matter. there is an
infinite region outside the ball, and we can imagine that there may be puzzling
features inside the horizon region r < 2M after the ball collapses. But we do
not expect to generate by such a collapse a region which contains a whole new
asymptotic infinity.

We will see below that when a black hole is made by collapsing a ball of
matter, we do not get the white hole region or the second asymptotic infinity.
We do get a region inside the future horizon – the interior of the hole. The
existence of this interior region is responsible for Hawking’s puzzle with black
hole evaporation.

It may therefore seem that the full extended black hole is a mathematical
object with no physical relevance. But as we will see later, the information para-
dox can be posed for the extended black hole spacetime as well, and analyzing
the paradox in this context will lead to important clues about what quantum
gravity effects can do in spacetimes with horizons.

Figure 3.1: The fully extended Schwarzschild geometry

3.3 The Penrose diagram

Before we proceed to study the black hole made by collapse, let us pause to
discuss a convenient way of depicting the various spacetime geomerries that we
will encounter.

The U, V coordinates cover all of our extended black hole spacetime. These
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coordinates do not have a bounded range. Thus if we try to draw the U, V
space on a sheet of paper, then we can cover only a finite subset of the whole
spacetime, and in particular we cannot see the picture of how the ‘points at
infinity’ border our spacetime.

We would like to bring these ‘points at infinity’ to a finite distance from
the points in the interior of our spacetime. To do this, we make a conformal
rescaling of the metric. Here the word ‘conformal’ means that at each point the
metric is scaled by a number

gab(x)→ Ω2(x)gab(x) (3.38)

The factor Ω2(x) depends on the position x, and will be taken to be large near
infinity; this is what will squeeze the infinite spacetime to a compact region.
This squeezing will introduce a distortion in our depiction, which we will have
to take into account when looking at the resulting figure. But one fact does not
change: if the separation between two points was null – i.e., ds2 = 0 – then it
will remain null after the rescaling (3.38). We usually draw null lines as lines
with slope ±1, and this will remain the case after the rescaling. Since horizons
is are null surfaces, they will appear as a line with slope ±1 in our rescaled
figure.

Figure 3.2: Penrose diagram of Minkowski space

Let us first carry out this rescaling process for Minkowski spacetime. We
first write the spatial metric in polar coordinates

ds2 = −dt2 + dr2 + r2dΩ2
2 (3.39)

Define
U = t+ r, V = t− r (3.40)
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so that
ds2 = −dUdV + r2dΩ2 (3.41)

where now the coordinates are U, V, θ, φ, and

r =
1

2
(U − V ) (3.42)

Since r > 0, we find the alllowed range

−∞ < U <∞, −∞ < V <∞, U ≥ V (3.43)

We observe that the range of U, V is not finite. To make it finite, define

Ũ = tanhU, Ṽ = tanhV (3.44)

Now we have
−1 < Ũ < 1, −1 < Ṽ < 1, Ũ ≥ Ṽ (3.45)

and the metric is
ds2 = −[

dU

dŨ

dV

dṼ
]dŨ Ṽ + r2dΩ2 (3.46)

But
dU

dŨ
= sech2 U =

1

1− Ũ2
,
dV

dṼ
= sech2 V =

1

1− Ṽ 2
(3.47)

so we have

ds2 =
1

(1− Ũ2)(1− Ṽ 2)
[−dŨdṼ + r2(1− Ũ2)(1− Ṽ 2)dΩ2] (3.48)

So far we have just rewritten Minkowski spacetime in new coordinates. Now
make a conformal transformation, defining a new metric

g′ab = (1− Ũ2)(1− Ṽ 2)gab (3.49)

This new metric is

ds′2 = −dŨdṼ + r2(1− Ũ2)(1− Ṽ 2)dΩ2 (3.50)

Let us ignore the angular directions; since we have spherical symmetry there is
no nontrivial structure in these directions, and we cannot depict more than two
directions on our figure anyway. Thus we focus on the metric

ds′2 = −dŨdṼ (3.51)

This metric, with the coordinate ranges (3.45), gives the spacetime picture in
fig.3.2. Such a figure is called a Penrose diagram of the spacetime.

The null directions in this spacetime are Ũ = U0 and Ṽ = V0; these are lines
with slope ±1.
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Figure 3.3: Penrose diagram for the ‘eternal Schwarzschild hole’

Let us now find the Penrose diagram for the extended black hole metric
(3.22)

ds2 = −32M3

r
e−

r
2M dUdV + r2dΩ2 (3.52)

We squeeze the range of U, V by the transformation (3.44). We then scale the
metric as in (3.49). Dropping the angular directions as before, we find

ds′2 = −32M3

r
e−

r
2M dŨdṼ (3.53)

Let us now look carefully at the ranges spanned by our coordinates. The space-
time again ends at r = 0; this time there is a singularity there instead of a
‘simple origin of coordinates’. But r = 0 is now given by solving UV = 1 which
is

tanh−1Ũ tanh−1Ṽ = 1 (3.54)

This is a curve in Ũ , Ṽ space, and points beyond this curve are not in the
spacetime represented by the Penrose diagram, since they lie past the singularity.
Thus our coordinates span the range

−1 < Ũ < 1, −1 < Ṽ < 1, tanh−1Ũ tanh−1Ṽ < 1 (3.55)

We draw the resulting Penrose diagram in fig.3.3.
The singularity runs along a curve from Ũ = 0, Ṽ = 1 to Ũ = 1, Ṽ = 0.

Note that the rescaling that we have perform to bring infinity to a finite place
is not changed if we perform a further conformal rescaling at interior points of
spacetime. Thus we can imagine a further rescaling which makes the singularity
a straight line from Ũ = 0, Ṽ = 1 to Ũ = 1, Ṽ = 0; this is easier to draw, and
is typically what is done in drawing Penrose diagrams. The essential property
of the singularity we cannot change in the picture is that the singularity is
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spacelike; The constant r surface r = 0 is inside the horizon and so is spacelike
instead of timelike.

3.4 The black hole formed by collapse

Figure 3.4: Penrose diagram of the black hole made by collapse of a shell

We have seen that the extended black hole spacetime obtained by extending
the Schwarzschild metric has some strange features. We expect these features to
be absent when we take a more realistic hole, which has been made by starting
with a nonsingular distribution of matter and letting this collapse to create a
horizon.

The simplest geometry for this matter is that of a spherically symmetric
shell, with infinitesimal thickness. We then find the following:

(a) In Newtonian mechanics, the potential inside a spherical shell is Φ =
constant, so there is no gravitational field. A similar situation holds in general
relativity, where a result called the Birkoff theorem tells us that metric inside a
spherical shell is flat.

(b) In Newtonian mechanics the potential outside a spherically symmetric
body of mass M is is the same as the potential of a point mass M at the center
of the shell: Φ = −GM/r. A similar situation holds in general relativity, where
the Birkoff theorem tells us metric outside a spherical body of mass M is the
Schwarzschild metric with mass M .

Thus we have the metric inside and outside the shell, and all we need to do
is relate the choice of coordinates on the two sides by matching conditions at
the shell.
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These matching conditions need some work however. The shell falls in the
metric which it crates by its own stress energy tensor, and so its trajectory is a
nontrivial function of its mass. The problem is simplified if we take a null shell,
which is composed of massless particles moving radially inwards. Since these
massless particles must move at the speed of light, the trajectory of the shell
can be written down immediately.

The metrics created by null shells are called Vaidya metrics. We will take
a single infinitesimally thin null shell, and find the full spacetime geometry by
matching coordinates on the two sides of this shell.

3.4.1 The metric inside the shell

Inside the shell we have flat Minkowski spacetime

ds2
f = −dt2f + dr2 + r2dΩ2 (3.56)

The subscript f indicates the metric is ‘flat’. We have also placed this subscript
on the ti,e coordinate, to distinguish it from the time coordinate we will find
outside the shell. The r coordinate does not need such a subscript, since we will
take ds2 → r2dΩ2 both inside and outside the shell. Thus r has the geometric
significance of being the proper radius of the angular sphere at any location,
and in particular the value of r just inside the shell will agree with the value
just outside the shell. The angular coordinates θ, φ can also be taken to be the
same inside and outside, so we do not give them a subscript either.

We pass to null coordinate by writing

uf = tf + r, vf = tf − r (3.57)

The metric inside the shell then becomes

ds2
f = −dufdvf + r2dΩ2 (3.58)

The inner surface of the shell describes a radial null trajectory in this metric.
By choosing th origin of tf appropriately, we can let this trajectory be

uf = 0 (3.59)

Note that
r =

uf − vf
2

= −vf
2

(3.60)

3.4.2 The metric outside the shell

Outside the shell we have the metric corresponding to a mass M

ds2
BH = −32M3

r
e−

r
2M dUdV + r2dΩ2 (3.61)
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We have added a subscript K (for Kruskal) to U, V to differentiate them from
the Minkowski coordinates uf , vf inside the shell. Outside the horizon, i.e. in
the region V < 0, we have

U = e
u

4M , V = −e− v
4M (3.62)

where
u = tK + r∗, v = tK − r∗ (3.63)

and tK goes over to the usual time coordinate at infinity.
The outer surface of the shell must follow an ingoing null geodesic in the

metric (3.61). This geodesic will have the form U = U0 for some constant U0.
Recall that U = Exp[u/4M ], where u = t + r∗. We can choose the origin of t
to set u = 0 along the shell, which gives

U = 1 (3.64)

3.4.3 Matching coordinate systems

Consider two infinitesimally separated points on the trajectory of the infalling
shell. We have noted that the value of r is a geometric object, since it gives the
proper radius of the angular sphere. Thus the separation dr between these two
points must be the same on both sides of the shell.

On the inner surface of the shell, we have

r =
uf − vf

2
= −vf

2
(3.65)

where we have used (3.59). Thus

dr = −1

2
dvf (3.66)

On the outer surface of the shell, we use the relation (3.23) giving r(U, V ).
Noting that U = 1 along the trajectory of the shell, we find

dV = − r

4M2
e
r

2M dr (3.67)

We substitute the value of r from the inner side of the shell, since this is given
by the simpler expression (3.65). We get

dr = −4M2

r
e−

r
2M dV =

8M2

vf
e
vf
4M dV (3.68)

Equating (3.66) and (3.68), we get

dvf = −16M2

vf
e
vf
4M dV (3.69)



3.4. THE BLACK HOLE FORMED BY COLLAPSE 47

This has the solution

V =
(vf + 4M)

4M
e−

vf
4M + C (3.70)

The constant C is fixed by looking at the location of the horizon r = 2M . Inside
the shell, we see from (3.60) that the horizon is vf = −4M . Outside the shell
we have seen that the horizon is at V = 0. Thus C = 0, and we have

V =
(vf + 4M)

4M
e−

vf
4M (3.71)

We have seen that trajectories that start on opposite sides of the horizon
diverge away from the horizon on opposite sides:

(a) The trajectories with V < 0 lie outside the horizon, and eventually escape
to infinity where the natural coordinate is v (given by (3.62)).

v = −4M ln(−V ) = vf − 4M ln

(
− (vf + 4M)

4M

)
(3.72)

For trajectories that start very close to the horizon, we have vf + 4M → 0, and
we observe a logarithmic relation between the Minkowski coordinate vf and the
coordinate V at infinity

v ≈ −4M ln

(
− (vf + 4M)

4M

)
(3.73)

(b) Trajectories with V > 0 lie inside the horizon, and eventually fall into the
singularity. We will consider out full quantum state on a spacelike hypersurface
where we catch these trajectories before they reach the singularity. We need to
define modes for this region of the hypersurface, but the precise choice of these
modes will not be relevant. As we have noted before, there is no unique definition
of particle modes if we are not in a region where spacetime is essentially flat.
The spacetime inside the hole cannot be approximated by a flat metric over
distances of the order of the wavelength of Hawking quanta: the wavelength of
these quanta is ∼ M , and the curvature length scale of the hole is also ∼ M .
But the absence of a unique definition of particle in the black hole interior will
not be relevant to us, since we focus on the particles that have been emitted by
the hole. We are interested in how these emitted particles are entangles with
what is inside the hole, and this entanglement itself is independent of how we
define particles inside the hole.

To carry out or computations, we make a choice of particle modes in the
black hole interior in a manner that is similar to the definition of particles in
the exterior. In the exterior, the natural coordinate far from the hole was v,
defined through V = −Exp[−v/4M ]. In the interior we define

V = e
ṽ

4M (3.74)
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Thus
ṽ = 4M ln(V ) = −vf + 4M ln

(
(vf + 4M)

4M

)
(3.75)

For trajectories that start very close to the horizon, we get

ṽ ≈ 4M ln

(
(vf + 4M)

4M

)
(3.76)

3.5 Wavemodes

Let us now look at the wavemodes that we will use to define particles in various
regions of our black hole spacetime.

3.5.1 The eikonal approximation
Let us now see how to construct the wavemodes we need in the eikonal approx-
imation. Consider the modes that lie outside the horizon, and will each infinity
to give the emitted Hawking particles. In this region our metric (3.22) has the
form

ds2 = −F (r)dudv + r2dΩ2 (3.77)

where
u = t+ r∗, v = t− r∗ (3.78)

and
dr∗

dr
=

1

1− 2M
r

(3.79)

Here the variables in the metric are u, v, θ, φ, and r is a function r(u, v).
In general a solution of the waveequation �φ = 0 will not be purely outgo-

ing or purely ingoing; this is because the nontrivial dependence of the metric
coefficients on r reflect each of these two kinds of waves to the other. But we
can imagine that if the mode had a wavelength much shorter than the curvature
scale ∼M of the geometry, then it would travel straight out to infinity without
significant reflection. Outgoing null rays have u = constant, so we could try an
ansatz

h ∼ Ylm(θ, φ)e−ikv (3.80)

where the condition of short wavelengths is

k � 1

M
(3.81)

We will focus on spherically symmetric modes, since most of the Hawking emis-
sion is in these modes. Then the angular harmonic is Y0,0 = 1. But this ansatz
needs a little correction: we would like to ensure that the inner product be-
tween two modes (hk, hk′) is conserved as the mode evolves. This will introduce
a slowly varying prefactor in our ansatz

hk = A(r)e−ikv (3.82)



3.5. WAVEMODES 49

Let us find A(r). The waveequation is

1√
−g

∂µ
(
gµν
√
−gφ,nu

)
= 0 (3.83)

We have for the metric (3.77)

guv = − 2

F (r)
,
√
−g =

1

2
F (r)r2 sin θ (3.84)

Then (3.83) gives

∂u
(
r2A(r)(−ik)e−ikv

)
+ ∂u

(
r2A(r),ve

−ikv)+ ∂v
(
r2A(r),ue

−ikv) = 0 (3.85)

which yields

−ik∂u
(
r2A(r)

)
+ ∂u

(
r2A(r),v

)
− ikr2A(r),u + ∂v

(
r2A(r),u

)
= 0

For large k, we keep only the terms containing a factor k, which gives

∂u
(
r2A(r)

)
+ r2A(r),u = 0 (3.86)

Note that for a function Q(r), we have

∂uQ(r) = Q′(r)
∂r

∂u
= Q′(r)

dr

dr∗
∂r∗

u
=

1

2
(1− 2M

r
)Q′(r) (3.87)

where we have used r∗ = 1
2 (u− v). Then (3.86) gives

A′(r) + rA(r) = 0 (3.88)

which has the solution

A(r) =
C ′

r
=

C

(4πr2)
1
2

(3.89)

where in the second step we have rewritten the result in a way that shows the
physical origin of the prefactor A: the expansion of the angular spheres leads
to a drop in the amplitude of the mode as it moves outwards. Thus our modes
in the region outside the hole have the form

hk =
C

(4πr2)
1
2

e−ikv (3.90)

As we will see below, it turns out that the norm for these modes is conserved
through the evolution, not only in the large k approximation but for all k.
But it should be noted that these modes are only approximate solutions to the
waveequation, and need an order unity correction when k ∼ 1/M .

The generic quanta emitted by the hole have k ∼ 1/M , rather than k � 1/m.
Why then are we using the eikonal approximation? There are two reasons:
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(i) The important property of the emitted quanta is the fat that they are
entangles with quanta that fall into the hole. This nature of this entanglement
will be captured by the modes used in our approximation, even if the overall
magnitude of entanglement is off by a factor of order unity.

(ii) The temperature T of the emitted radiation is captured exactly by the
modes in the eikonal approximation, even though the rate of radiation is off
by a factor Γ[k] of order unity. We will see that the factors Γ[k] are greybody
factors, present even in the radiation from a normal body and dependent on
the shape and size of this body. The temperature on the other hand is a more
robust quantity independent of the geometry of the body, and can be read off
from the detailed balance between the body and its radiation.

3.5.2 Modes in the flat spacetime region
As mentioned before, we are interested in spherically symmetric solutions. We
wish to focus on modes that are outgoing near the horizon. In a spherically
symmetric geometry, there are, strictly speaking, no purely outgoing or ingoing
modes: an ingoing mode reaches the origin r = 0 and then reflects back as an
outgoing mode. But we are going to use an eikonal approximation, where we
look at modes that have wavelength λ � M near the horizon. and just follow
wavefronts as they move away from the horizon. Thus we can look at short
wavelength outgoing modes when they are near the horizon. We write

v̄f = −4M (3.91)

Then vf = v̄f at the horizon. Let us define

fka =
1√

2π
√

2ka

1

4M
e−ika(vf−v̄f ) =

1√
2π
√

2ka

1

4M
eika(r−tf−4M) (3.92)

Here ka > 0, and we see that we have a mode where the phase fronts move
radially outwards at the speed of light. The factor 1/(4M) arises from m

1√
4πr2

≈ 1

4π(2M)2
=

1

4M
(3.93)

and is needed to normalize the spatial integral when we compute the inner
products below. We find that

(fka , fk′a) = i

∫
dr(4πr2)

(
f∗ka∂tf fk′a − f

∗
k′a
∂tf fka

)
≈ i

∫
dr(4M)2

(
f∗ka∂tf fk′a − f

∗
k′a
∂tf fka

)
≈ (ka + k′a)

(2π)
√

4k1k′a

∫
drei(ka−k

′
a)(r−2M)e−i(ka−k

′
a)(tf+2M)

=
(ka + k′a)

(2π)
√

4k1k′a
(2πδ(ka − k′a)) e−i(ka−k

′
a)(tf+2M)

= δ(ka − k′a) (3.94)
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In the third step we have made the approximation of short wavelengths. The
r integral runs over (0,∞), but we are looking at highly oscillating modes near
r = 2M and so expect the expect the integrals over our wavepackets to have their
contribution from a small range of r around r = 2M . Thus we can formally
extend the range of the r integral to an infinite range on both sides of the
horizon; this gives the delta function. Proceeding similarly, we find the full set
of inner products

(fka , fk′a) = δ(ka − k′a), (f∗ka , f
∗
k′a

) = −δ(ka − k′a), (f∗ka , fk′a) = 0 (3.95)

3.5.3 Wavemodes at infinity
Near infinity the natural time coordinate is t. We define the wavemodes

gkb =
1√

2π
√

2kb

1

(4πr2)
1
2

e−ikbv =
1√

2π
√

2kb

1

(4πr2)
1
2

eikb(r
∗−t) (3.96)

Suppose we are looking around a point r̄ � M . Then the logarithm in r∗ =
r+2M log( r

2M −1) oscillates slowly compared to the term r, since∂r log r = 1/r.
We therefore have

(gkb , gk′b) = i

∫
dr(4πr2)

(
g∗kb∂tf gk′b − g

∗
k′b
∂tf gkb

)
=

(kb + k′b)

(2π)
√

4kbk′b

∫
drei(kb−k

′
b)(r+2M log( r

2M−1)e−i(kb−k
′
b)t

≈ (ka + k′a)

(2π)
√

4kbk′b

∫
drei(kb−k

′
b)(r+2M log( r̄

2M−1)e−i(kb−k
′
b)t

≈ δ(kb − k′b) (3.97)

where we have again extended the range of the r integral to an infinite one on
both sides of r̄. Thus we have

(gkb , gk′b) = δ(kb − k′b), (g∗kb , g
∗
k′b

) = −δ(kb − k′b), (g∗kb , gk′b) = 0 (3.98)

We will consider these modes in the region near the horizon when we are
computing the inner product with the modes fka . Thus let us check that the
modes gkb have the correct normalization when considered near the horizon. If
we follow the lines v = constant back from infinity to the vicinity of r = 2M , we
find that they lie close to but outside the horizon. Let us use the Schwarzschild
coordinates here, considering the hypersurface t = constant as out spacelike
hypersurface. The volume element is

dΣ = 4πr2 dr

(1− 2M
r )

1
2

(3.99)

The normal derivative involved in the computation of the inner product is

∂n = (gtt)
− 1

2 ∂t =
1

(1− 2M
r )

1
2

∂t (3.100)
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The inner product is

(gkb , gk′b) = i

∫
dr

1− 2M
r

(4πr2)
(
g∗kb∂tgk′b − g

∗
k′b
∂tgkb

)
=

(kb + k′b)

(2π)
√

4kbk′b

∫
dr

1− 2M
r

ei(ka−k
′
a)r∗e−i(kb−k

′
b)t

=
(kb + k′b)

(2π)
√

4kbk′b

∫
dr∗ei(ka−k

′
a)r∗e−i(kb−k

′
b)t

= δ(kb − k′b) (3.101)

which agrees with (3.97).

3.5.4 Modes inside the horizon

Inside the horizon, we can introduce Schwarzschild type coordinates (3.37), but
now t̃ is a spacelike direction and the direction of decreasing r is the forward
timelike direction. We define

hkc =
1√

2π
√

2kc

1

(4πr2)
1
2

e−ikcṽ (3.102)

To compute the inner product, we take a spacelike surface r = rc, with

0 < rc < 2M (3.103)

The spatial volume element is

dΣ = 4πr2dt(
2M

r
− 1)

1
2 (3.104)

The normal derivative involved in the computation of inner products is

∂n = −(grr)
− 1

2 ∂r = −(
2M

r
− 1)

1
2 ∂r (3.105)

The inner product is

(hkc , hk′c) = −i
∫

(4πr2)dt(
2M

r
− 1)

(
h∗kc∂rhk′c − h

∗
k′c
∂rhkc

)
=

(kc + k′c)

(2π)
√

4kck′c

∫
dt(

2M

r
− 1)

dr∗

dr
ei(kc−k

′
c)r
∗
e−i(kc−k

′
c)t

=
(kc + k′c)

(2π)
√

4kck′c

∫
dtei(kc−k

′
c)r
∗
c e−i(kc−k

′
c)t

= δ(kc − k′c) (3.106)
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3.5.5 The mode expansions

In the flat space region we set

φ̂ =

∫
dka

(
fka âka + f∗ka â

†
ka

)
(3.107)

On the late time slice we have a part at infinity and a part inside the hole. Thus
on this slice we write

φ̂ =

∫
dkb

(
hkb b̂kb + h∗kb b̂

†
kb

)
+

∫
dkc

(
h̃kc ĉkc + h̃∗kc ĉ

†
kc

)
(3.108)

Equating the two expansions, we get∫
dka

(
fka âka + f∗ka â

†
ka

)
=∫

dkb

(
hkb b̂kb + h∗kb b̂

†
kb

)
+

∫
dkc

(
h̃kc ĉkc + h̃∗kc ĉ

†
kc

)
(3.109)

Since the modes hb and h)c are localized on very different parts of the late
time hypersurface, they have vanishing inner products

(hkb , h̃kc) = 0, (h∗kb , h̃kc) = 0, (hkb , h̃
∗
kc) = 0, (h∗kb , h̃

∗
kc) = 0 (3.110)

We can isolate the operator b̂kb by computing (hkb , ·) on both sides of (3.109)

b̂kb =

∫
dka

(
(hkb , fka)âka + (hkb , f

∗
ka)â†ka

)
(3.111)

Similarly, we find

ĉkc =

∫
dka

(
(h̃kc , fka)âka + (h̃kc , f

∗
ka)â†ka

)
(3.112)

b̂†kb =

∫
dka

(
(h∗kb , fka)âka + (h∗kb , f

∗
ka)â†ka

)
(3.113)

ĉ†kc =

∫
dka

(
(h̃∗kc , fka)âka + (h̃∗kc , f

∗
ka)â†ka

)
(3.114)

3.6 Computing the inner products

3.6.1 Computing (hkb , f
∗
ka
)

We have

f∗ka =
1√

2π
√

2ka

1

(4πr2)
1
2

eika(vf+4M) (3.115)
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h∗kb =
1√

2π
√

2kb

1

(4πr2)
1
2

eikbv

=
1√

2π
√

2kb

1

(4πr2)
1
2

e
ikb[vf−4M ln

(
−

(vf+4M)

4M

)
] (3.116)

We have

(hkb , f
∗
ka) = i

∫
dvfdΩr2

(
h∗kb∂vf f

∗
ka − f

∗
ka∂vfh

∗
kb

)
= i

∫
(4πr2)dvf

(
h∗kb∂vf f

∗
ka + (∂vf f

∗
ka)h∗kb

)
= i

∫
(8πr2)dvf

(
h∗kb∂vf f

∗
ka

)
(3.117)

We find

(hkb , f
∗
ka) = i

∫ −4M

−∞
dvf

2

2π

1√
4kakb

e
ikb[vf−4M ln

(
−

(vf+4M)

4M

)
]
(ika)eika(vf+4M)

= −
∫ −4M

−∞
dvf

1

2π

√
ka
kb
e
ikb[vf−4M ln

(
−

(vf+4M)

4M

)
]
eika(vf+4M)

(3.118)

Let us define
X = −(vf + 4M) (3.119)

and write kb ≡ k Then we find

(hk, f
∗
ka) = −

∫ ∞
X=0

dX
1

2π

√
ka
k
eik[−X−4M−4M ln( X

4M )]e−ikaX (3.120)

3.6.2 Computing (h̃∗
kc
, f ∗

ka
)

We have

h̃kc =
1√

2π
√

2kc

1

(4πr2)
1
2

e−ikcṽ

=
1√

2π
√

2kc

1

(4πr2)
1
2

e
−ikc[−vf+4M ln

(
(vf+4M)

4M

)
] (3.121)

(h̃∗kc , f
∗
ka) = i

∫
dvfdΩr2

(
h̃kc∂vf f

∗
ka − f

∗
ka∂vf h̃kc

)
= i

∫
(8πr2)dvf

(
hkc∂vf f

∗
ka

)
(3.122)
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We find

(h̃∗kc , f
∗
ka) = i

∫ ∞
−4M

dvf
2

2π

1√
4kakc

e
−ikc[−vf+4M ln

(
(vf+4M)

4M

)
]
(ika)eika(vf+4M)

= −
∫ ∞
−4M

dvf
1

2π

√
ka
kc
e
−ikc[−vf+4M ln

(
(vf+4M)

4M

)
]
eika(vf+4M)

(3.123)

Let us define
X = (vf + 4M) (3.124)

and write kc ≡ k. Then we find

(h̃∗k, f
∗
ka) = −

∫ ∞
0

dX
1

2π

√
ka
k
e−ik[−X+4M+4M ln( X

4M )]eikaX

3.6.3 Relating the two computations

We go to a new contour, where we have new values of X. Thus we get

(h̃k, f
∗
ka) = −

∫ ∞
X=0

dX
1

2π

√
ka
k
e−ik[−X+4M+4M ln( X

4M )]eikaX

= −
∫ −∞
X=0

dX
1

2π

√
ka
k
e−ik[−X+4M+4M ln( X

4M )]eikaX

= −
∫ ∞
X′=0

(−dX ′) 1

2π

√
ka
k
e
−ik[X′+4M+4M ln

(
X′
4M

)
+4M(iπ)]

e−ikaX
′

= e4πMk

∫ ∞
X′=0

dX ′
1

2π

√
ka
k
e
−ik[X′+4M+4M ln

(
X′
4M

)
]
e−ikaX

′

(3.125)

where in the last step we have written X ′ = −X.
Thus we find that

(h̃k, f
∗
ka) = −e4πMk(hk, f

∗
ka) (3.126)

Thus the combination
b̂k + e−4πMk ĉ†k (3.127)

has only annihilation operators â†ka and no creation operators â†ka . This this
combination annihilates the vacuum |0〉a(

b̂k + e−4πMk ĉ†k

)
|0〉a = 0 (3.128)
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3.7 Correlating wavepackets

The expression (??) shows that modes b̂k near in finity are entangled with
modes ĉk inside the hole. We see a correlation in fourier space labelled by
k: the excitation level of fourier mode k outside the hole is correlated with the
excitation of the same mode k inside the hole. A fourier mode however describes
a function that is delocaiized in space: for example, a wavefunction Exp[ikr]
extends over all values of r. By contrast, in our earlier heuristic picture of pair
creation we had visualised particles that were rather loalized in positon space:
when an electron emerged from the hole, a positron fell in, and if at a later
time a positron emerged from the hole, then an electron would fall in at that
later time. Thus we would like to rewrite our state (??) in a way that exhibits
some locality, so that we can see particles being emitted with reasonably well
locaized wavefunctions, and also see their infalling partners having reasonaby
well localized wavefunctions at correponding positions inside the horizon.

We proceed as follows:

(i) We wish to make wavepackets that are reasonably localized in position
space. This means that we will need to have a nonzero spread in the correspond-
ing momentum k. Thus let us start with k space. Our wavefunctions have the
form ∼ Exp[−ikv] with k > 0. Thus we take the interval 0 < k <∞ and divide
this into intervals of length ε. Let the nth interval extend over

nε ≤ k ≤ (n+ 1)ε, −0 <≤ n <∞ (3.129)

In this interval, we take a complete basis of functions of k:

Ĥn,s(k) =
1√
ε
e
isk
ε , nε ≤ k ≤ (n+ 1)ε

= 0 otherwise (3.130)

where −∞ < s <∞ is an integer. The functions Ĥn,s(k) are orthonormal∫
dkĤ∗n,s(k)Ĥn′,s′(k) = δn,n′δs,s′ (3.131)

and give a complete set of functions on the like −∞ < k < ∞. Our position
space wavepackets will be defined as the fourier transforms of the Ĥn,s. Since
fourier transformation can be thought of as just a change of basis for the func-
tions, the orthonormality of Ĥn,s implies that our position space wavepackets
will be also be automatically orthonormal in the norm

∫
dx|H(x)|2.

(ii) Define the position space wavepackets

Hn,s(v) =
1√
2π

∫ ∞
−∞

dke−ikvĤn,s (3.132)
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Since Ĥn,s(k) is localized near wavenumbers k ≈ nε, we see that Hn,s(v) will
be reasonably localized in momentum space: ∆k ∼ ε. To see where Hn,s(v) is
localized in position space v, note that Ĥn,s(k) is oscillating in k as eisk/ε. Thus
the k integral in (3.135) will damp out the integral unless this phase oscillation
is cancelled by the oscillation from the factor e−ikv. Thus the wavepacket will
peak around

vn,s ≈
s

ε
(3.133)

The spatial width of the wavepacket is

∆v ∼ 1

∆k
∼ 1

ε
(3.134)

Thus we have wavepackets of length ∼ 1/ε, peaked at locations that are sepa-
rated by a distance ∼ 1/ε.

Let us now compute the wavepackets (3.135) explicitly

Hn,s(v) =
1√
2π

∫ (n+1)ε

nε

dkê−ikv
1√
ε
e
isk
ε

=
1√

2π
√
ε

ei(n+1)(s−vε) − ein(s−vε)

i( sε − v)

=

√
ε

2π
ei(n+ 1

2 )ε( sε−v) sin[ 1
2 (s− vε)]

[ 1
2 (s− vε)]

(3.135)

Thus we have a wavefunction oscillating in v with a wavenumber ≈ (n + 1
2 )ε,

modulated by a facto of the form sinx/x, which peaks at x = 0. This peak is
at v = s/ε, as anticipated above.

Note the reverse transform (3.135) is

Ĥn,s(k) =
1√
2π

∫ ∞
−∞

dveikvHn,s (3.136)

(iii) Let us now turn to the expansion of the field operator φ̂:

φ̂ =

∫
dk
(
b̂khk(v) + b̂†kh

∗(v)
)

(3.137)

The functions h(v) are normalized not in the L2 norm, but with the inner
product (??). Thus these functions are obtained by starting with the functions

qk(v) ≡ 1√
2π
e−ikv (3.138)

which are normalized as ∫
dvq∗k(v)qk′(v) = δ(k − k′) (3.139)
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and adding a factor 1/
√

2k

hk(v) =
1√
2k
qk(v) (3.140)

We can similarly make mode functions based on the wavepackets Hn,s(v) which
are normalized in the L2 norm (3.131). In fourier space these functions were
peaked around k = nε with a small width ε. Thus we can take

hn,s(v) ≈ 1√
2nε

Hn,s(v) (3.141)

as mode functions that are orthonormal in the inner product (??). Note that
we have used the same symbol h for these wavemodes, and will distinguish them
from the hk(v) by the extra index they carry. We can write the field operator
using these modes

φ̂ =
∑
n,s

(
b̂n,shn,s(v) + b̂†n,sh

∗
n,s(v)

)
(3.142)

Equating (3.137) and (3.142)∫
dk
(
b̂khk(v) + b̂†kh

∗(v)
)

=
∑
n,s

(
b̂n,shn,s(v) + b̂†n,sh

∗
n,s(v)

)
(3.143)

Taking (h∗k, ·) on both sides, and noting that (h∗k, h
∗
k′) = −δ(k − k′), we have

b̂†k = −
∑
n,s

(
b̂n,s(h

∗
k, hn,s) + b̂†n,s(h

∗
k, h
∗
n,s)
)

(3.144)

We have

(h∗k, h
∗
n,s) = i

∫
dv
(
hk(v)∂vh

∗
n,s(v)− (∂vhk(v))h∗n,s(v)

)
= −2i

∫
dv(∂vhk(v))h∗n,s(v)

= −2i

∫
dv

1√
2π

1√
2k

(−ik)e−ikv
1√
2nε

H∗n,s(v)

= −
∫
dv

1√
2π

√
k

nε
e−ikvH∗n,s(v)

= −
√

k

nε
Ĥ∗n,s(k)

≈ −Ĥ∗n,s(k) (3.145)

where in the first step we have done an integration by parts on the first term
in the inner product, and in the last step we have noted that Ĥ∗n,s(k) is peaked
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sharply around k ≈ nε. A similar computation gives (h∗k, hn,s) ≈ 0, since Ĥn,s

vanishes for wavenumbers k < 0. Thus we have

b̂†k ≈
∑
n,s

Ĥ∗n,s(k)b̂†n,s (3.146)

(iv) Now consider the operators ĉ†k, Let us define a new basis of operators
ĉ†n,s through

ĉ†k =
∑
n,s

Ĥn,s(k)ĉ†n,s (3.147)

The purpose of this definition can be seen by looking at the exponent in (??)∫ ∞
0

dke−4πMk b̂†k ĉ
†
k =

∫ ∞
0

dke−4πMk

(∑
n,s

Ĥ∗n,s(k)b̂†n,s

)∑
n′,s′

Ĥn′,s′(k)ĉ†n′,s′


(3.148)

The product Ĥ∗n,s(k)Ĥn′,s′(k) vanishes unless n = n′, and when n = n′ then it
has support over a narrow range of k with k ≈ nε. Thus the factor e−4πMk is
almost constant over this range of km and we can take it out of the integral:∫ ∞

0

dke−4πMk b̂†k ĉ
†
k ≈ e−4πMnε

∫ ∞
0

dk

(∑
n,s

Ĥ∗n,s(k)b̂†n,s

)∑
n′,s′

Ĥn′,s′(k)ĉ†n′,s′


=

∑
n,s

∑
n′,s′

e−4πMnεb̂†n,sĉ
†
n′,s′δn,n′δs,s′

=
∑
n,s

e−4πMnεb̂†n,sĉ
†
n,s (3.149)

where we have used (3.131). Thus the state created by Hawking evaporation
can be written as one where the excitations at infinity in the wavepackets hn,s
are correlated with corresponding wavepackets in the interior of the hole.

(v) Finally we consider the nature of the wavepackets for b̂n,s and ĉ†n.s. We
have written the wavepackets for b̂† as functions of v, but we can consider them
on a spacelike hypersurface t = t0. Since v = t − r∗, we see from (3.133) that
the wavepacket for b̂†n,s is localized around

r∗ = t− s

ε
(3.150)

Thus the modes for larger integers s are localized closer to the hole, indicating
that they are emitted later.

Now consider the modes for ĉ†n,s. The field operator inside the hole is ex-
panded as

φ̂ =

∫
dk
(
ĉkh̃k(ṽ) + ĉ†kh̃

∗
k(ṽ)

)
(3.151)
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With the change of basis (3.147) we have

φ̂ =

∫
dk
∑
n,s

(
ĉn,sĤ

∗
n,s(k)h̃k(ṽ) + ĉ†n,sĤn,s(k)h̃∗k(ṽ)

)
≡

∑
n,s

(
ĉn,sh̃n,s(v) + ĉ†n,sh̃

∗
n,s(v)

)
(3.152)

where the mode functions are now

h̃n,s(v) =

∫
dkĤ∗n,s(k)

1√
2π

1√
2k
e−ikṽ

=

∫ (n+1)ε

nε

dk
1√
ε
e
isk
ε

1√
2π

1√
2k
e−ikṽ

(3.153)

The integral over k peaks at the location where the coefficient of k in the expo-
nent vanishes:

s

ε
− ṽ =

s

ε
− r̃∗ + t̃ = 0 (3.154)

We look at these modes on a surface r̃∗ = r̃∗c . Then we see that larger values of
s correspond to later values of t̃.

Putting this together with the behavior of the b̂ modes, we get the following
picture. Larger values of s correspond to later emissions. The corresponding
particles outside the hole are closer to the hole on a slice t = t0, and the
corresponding particles inside the hole are at later times t̃ on the slice r̃∗ = r̃∗c .

|0〉a =
∏
k>0,s

e−e
−4πMkB̂†k,sĈ

†
k,s |0〉b ⊗ |0〉c (3.155)
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