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Lecture notes 1

Making black holes

How should we make a black hole in string theory?
A black hole forms when a large amount of mass is collected together. In

classical general relativity, the resulting gravitational field then deforms space-
time to create a horizon. To make a black hole in string theory, we must use the
elementary excitations – gravitons, strings, branes etc. – present in the theory.
We should put a large number of these excitations together, and see if we get a
black hole.

The simplest excitation is the graviton. But the graviton is massless, and
so moves at the speed of light. While a black hole can be made from a suffi-
cient number of massless particles, it is easier to start with excitations that are
massive, since these can be made to stay at a given location.

String theory has extended objects like strings and branes. In their lowest
energy state, the force of tension makes such objects collapse to a point, and we
again get massless excitations like gravitons and gauge fields. To get a massive
excitation, we should somehow stretch these objects to a nonzero size. The
simplest way to do this is to compactify some directions of space. We can then
wrap the extended object on these compact directions, causing it to have a
nontrivial extent, and thus a nonzero mass.

Let us now follow this path, and see if we get black hole.

1.1 Wrapped strings

We start as follows:

(i) String theory lives in 9+1 spacetime dimensions. We compactify p di-
rections to circles; let these be the directions x1, . . . xp. This leaves 9− p space
directions noncompact. Thus we will get a black hole in (9 − p) + 1 spacetime
dimensions.

(ii) We wrap a string along one of the compact directions, say x1. In the
noncompact directions, we let this string be at the origin: {xp+1, . . . x9} = 0.
Let the length of the x1 circle be L. Then the energy of the wrapped string is

E = TNS1L (1.1)

From the viewpoint of the noncompact directions, this gives a point mass

m = TNS1L (1.2)

2



1.1. WRAPPED STRINGS 3

Figure 1.1: (a) The horizontal direction represents the noncompact space directions,
while the vertical direction represents the compact directions. A string is wrapped on
a compact circle. (b) From the viewpoint of the dimensionally reduced theory, we see
only the noncompact directions. The string now appears as an object with some mass
m.

(a) (b)

Figure 1.2: (a) If we take many separately wound strings, then we would be describing
many separate masses. (b) We take one multiwound string; this is a bound state, and
so corresponds to one massive object.

at the location {xp+1, . . . x9} = 0 (fig.1.1).

(iii) We want a large amount of mass to make a big black hole. Thus we
take n1 strings wrapped as above, with

n1 � 1 (1.3)

(iv) If we have n1 separately wrapped strings (as in fig.1.2(a)), then we
would be trying to make n1 separate tiny black holes. We wish to make one
large black hole. Thus we need to consider a bound state of these n1 strings. We
have already seen that such a bound state has a simple form: the string wraps
n1 times around x1 before closing. From the viewpoint of the noncompact
directions, this gives an object of mass

m = n1TNS1L (1.4)

at the location {xp+1, . . . x9} = 0 (fig.1.2(b)).

Now we ask: has this construction resulted in a black hole? To answer this
question, we must compute the metric produced by the above mentioned strings.
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1.1.1 The metric produced by strings
Let us take type IIA string theory for concreteness, and for the moment let
all directions be noncompact. It will be convenient to begin by looking at the
string metric gSµν , though later we will consider the Einstein metric gEµν as well.

Let us separate a direction x1 along which we will presently place our strings.
Introducing polar coordinates in the directions transverse to x1, the flat space-
time metric is

ds2
S = −dt2 + dx2

1 + dr2 + r2dΩ2
7 (1.5)

Now consider n1 string stretching along the direction x1, placed at the location
r = 0 in the transverse space. The metric produced by these strings has the
form []

ds2
S = H−1[−dt2 + dx2

1] + dr2 + r2dΩ2
7 (1.6)

where
H = 1 +

Q1

r6
(1.7)

Metrics of strings and branes will be crucial in our study, so let us analyze this
metric in some detail:

(i) The string has a 2-dimensional worldsheet spanning the directions t, x1.
We see that the metric is Lorentz invariant in this t, x1 space. This invariance
reflects the fact that the action of the string is just given by the area of the
worldsheet.

(ii) The coefficient function H is a harmonic function in the 7-dimensional
space transverse to the brane:

4H ≡
8∑
i=2

∂2

∂x2
i

H = 0 (1.8)

This is analogous to the fact that in the Schwarzschild metric we get gtt =
−(1− 2M

r ), which is harmonic in 3-dimensional space.

(iii) The quantity Q1 is proportional to the number of strings n1

Q1 ∝ n1 (1.9)

We assume that n1 � 1 to get strong sources whose metric can be well described
by a classical approximation.

The string is a charged object, and radiates the gauge field Bab. The coupling
of the string to the gauge field has the form of an integral along the worldsheet:∫
BdA. The worldsheet of the string lies along t, x1. Thus we expect to generate

a gauge field Btx1 . We have

Btx1 = H = 1 +
Q1

r6
(1.10)
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This gauge field is analogous to the field produced by a point charge q in elec-
tromagnetism. In the electromagnetic case the worldline is along t, and the
coupling has the form: q

∫
Adl. This results in a gauge field component At = q

r ,
which is just the scalar potential produced by a stationary point charge. This
scalar potential is harmonic: 4At = 0. Similarly, Btx1

is harmonic in the trans-
verse space x2, . . . x9. Note that we can add a constant to Btx1

by a gauge
transformation. Thus we can make Btx1 → 0 at infinity, and this potential then
looks entirely analogous to the electromagnetic case.

The gravitational solution produced by the string has one more nontrivial
component: the dilaton φ. Recall that from an M-theory perspective, the string
is given by a M2 brane wrapped on the direction x11. The tension of the M
brane tends to squeeze this direction to a smaller value near the location of
the branes. But the quantity eφ reflects the size of the x11 direction. Thus we
expect that eφ will approach smaller values as we approach r = 0. We have

eφ = H−1 = (1 +
Q1

r6
)−1 (1.11)

We see that as r → 0

eφ ≈ r6

Q1
→ 0 (1.12)

so φ→ −∞ and the x11 circle gets pinched to zero length.
Let us summarize the gravitational solution produced by elementary strings

lying along x1

ds2
S = H−1[−dt2 + dx2

1] + dr2 + r2dΩ2
7

Btx1 = H−1

e2φ = H−1

(1.13)

with
H = 1 +

Q1

r6
(1.14)

a harmonic function in the transverse 8-dimensional space. What is remarkable
is that we can replace H by any harmonic function, and still get a solution to
the field equations. Thus we can take

H = 1 +
q1

|~x− ~x1|6
+

q2

|~x− ~x2|6
+ · · ·+ qk

|~x− ~xk|6
(1.15)

where ~x1, ~x2, . . . ~xk are points in the 8-dimensional transverse space. This so-
lution corresponds to string sources with strengths qi at locations ~xi, with all
strings stretching along the direction x1.

1.1.2 Compactifying directions
In the above discussion we had 9+1 noncompact dimensions. Let us now see
how we can compactify p of these directions and move towards the black hole
solution we desire.
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Compactifying x1

The string above stretched for an infinite length along the x1 direction. But a
black hole should look like a localized object in spacetime. Thus the direction
x1 must be among the directions we compactify.

We see that the solution (1.13) is independent of x1. Thus it remains a
solution if we assume that

0 ≤ x1 < L1 (1.16)

and that we have the identification

x1 = 0 ↔ x1 = L1 (1.17)

Thus compactification along the direction of the string does not change the
algebraic form of the solution.

Compacitfying a transverse direction x2

Now supposed we wish to compactify a transverse direction like x2 on a circle
of length L2. A solution with such a compactification would be periodic under
the shift

x2 → x2 + L2 (1.18)

Unlike the situation with x1, the solution (1.13) is not periodic under shifts of
x2. To get a solution with the required periodicity, we take a 1-dimensional
array of string sources along the x2 direction, placed at locations

x2 = nL2, −∞ < n <∞ (1.19)

Thus the harmonic function H has the form

H = 1 +

∞∑
n=−∞

Q1

(r′2 + (x2 − nL2)2)3
(1.20)

where

r′2 =

9∑
i=3

x2
i (1.21)

Bu construction, the functions appearing in the solution (1.13) are now periodic
under (1.18), and we have compactified the transverse direction x2.

We will actually be interested in a useful approximation of the above solu-
tion. We normally think of the compact directions as having a fixed, small size,
perhaps of order planck length. The length scale set by Q1, on the other hand
will be large, since Q1 ∝ n1, and we make a large black hole by taking n1 � 1.
Thus we wish to consider the limit

L2 � Q
1
6
1 (1.22)
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In this limit the sum in (1.20) can be replaced by an integral

∞∑
n=−∞

Q1

(r′2 + (x2 − nL2)2)3
≈

∫ ∞
n=−∞

Q1

(r′2 + (x2 − nL2)2)3

=
3π

8L2

1

r′5
(1.23)

Thus H takes the form

H = 1 +
Q′1
r′5

(1.24)

which is a harmonic function in the noncompact space x3, . . . x9, which is now
7-dimensional.

Proceeding in this way, we find that if we compactify x1 and p − 1 other
directions, then the solution has the form (1.13) with

H = 1 +
Q′′1

r′′(7−p)
(1.25)

where r′′ is the radial coordinate in the noncompact directions.
We will be interested in the case where we compactify x1 and 4 other direc-

tions. In that case the harmonic function has the form

H = 1 +
Q′′1
r′′2

(1.26)

1.1.3 Looking for a horizon

In the above discussion we have worked with the string metric gSab. The physics
of black holes was, on the other hand, is naturally described in the Einstein
metric gEab. For example the entropy formula

Sbek =
A

4G
(1.27)

has the area of the horizon A measured using the Einstein metric. Thus we
start by converting the solution (1.13) to the Einstein metric.

We have
gEab = e−

φ
2 gSab (1.28)

This gives

ds2
E = H−

3
4 [−dt2 + dx2

1] +H
1
4 [dr2 + r2dΩ2

3] +H
1
4

4∑
i=1

dxidxi (1.29)

To look for a horizon, we consider a surface of constant r, and take the limit
r → 0. A constant r surface is a cylindrical 8-dimensional surface, with the
following structure:
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(i) In the transverse directions, we have a S3 of radius H
1
8 . The area of this

sphere is
AS3 = (2π2)H

3
8 (1.30)

where
AΩ3 = 2π2 (1.31)

is the volume of a 3-sphere of unit radius.

(ii) The direction x1 has the length

Lx1 = H−
3
8L1 (1.32)

(iii) The directions along the T 4 have a volume

V4 = H
1
2V4 (1.33)

Thus the overall area of the surface at radius r = r0 is

AH =
(

(2π2)H
3
8 r3
)(

H−
3
8L1

)(
H

1
2V
)

= 2π2LV H
1
2 r3 ≈ 2π2LV Q

1
2
1 r

2 (1.34)

We see that in the limit r0 → 0, we get

AH → 0 (1.35)

and we have not succeeded in getting a black hole.
It is not hard to see the reason for our failure. The strings wrap around the

direction x1. Their tension pinches this circle, making it have zero length at
the location of the strings. We will now see that our failure to get a nonzero
AH here is a good thing, since a nonzero AH would have led to an immediate
problem for string theory.

The entropy of the NS1 solution

Since AH = 0, we find that the Bekenstein entropy is

Sbek =
AH
4G

= 0 (1.36)

Let us compare this to the microscopic entropy Smicro of our system. We have
taken a bound state of n1 strings, with no excitations on these strings. We have
seen in (??) that the degeneracy of such a bound state is

N = 256 (1.37)

Thus
Smicro = ln[256] ≈ 0 (1.38)
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The symbol ≈ 0 here means that Smicro is a fixed number, rather than a number
that grows with n1. We take n1 � to make a good classical solution fro our
string source. If AH was nonzero for this classical solution, then it would be
something that increased with n1, and this would contradict (1.38). As things
have turned out, we can write

Sbek = Smicro ≈ 0 (1.39)

and string theory has saved itself from a problem.

1.2 The NS1-P solution

The tension of the NS1 strings had pinched the circle x1, making the horizon
area zero. What should we do to make the x1 direction not pinch?

To get a idea of what we need, consider the energy of the wrapped strings
without, for the moment, considering their backreaction on the metric. The
energy is

ENS1 = n1TNS1L1 (1.40)

This energy is minimized for L1 = 0, which is why the tension of the strings
pinches the x1 circle to zero at the location of the strings.

We thus need to add something whose energy will increase when L1 is de-
creased. Consider a graviton carrying np units of momentum along the x1. The
energy of this momentum mode will be

EP =
2πnp
L1

(1.41)

This energy increases when L1 is decreased. Assuming that the directions
x1, . . . x4 and y are compactified, one finds that the metric of such a graviton
mode is

ds2
string = H−1[−dt2 +dx2

1 +K(dt+dx1)2] + [dr2 + r2dΩ2
3] +

4∑
i=1

dxidxi (1.42)

where

K =
Qp
r2

(1.43)

and the gauge field and dilaton vanish

Bµν = 0, e2φ = 1 (1.44)

The quantity Qp is proportional to the number of units of momentum

Qp =
g2α′4

V R2
np (1.45)
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Now we take both NS1 and P charges. The solution is

ds2
string = H−1

1

[
(−dt2 + dx2

1) +K(dt+ dx1)2
]

+ [dr2 + r2dΩ2
3] +

4∑
i=1

dxidxi

Btx1
= H−1

e2φ = H−1

(1.46)

1.2.1 Microscopic entropy of the NS1P bound state
We have a bound state of n1 strings and np units of momentum. We have seen
that this bound state is degenerate: there are

N ≈ e2
√

2π
√
n1np (1.47)

states with the same mass and charge. These different states correspond to
different ways in which the momentum np can be carried along the multiwound
string as travelling waves. Thus the microscopic entropy is

Smicro = lnN = 2
√

2π
√
n1np (1.48)

This time we have an entropy that increases with the charges n1, np. Let us
now compute the area of the horizon.

1.3 The entropy of a gas of vibrations

Let a direction y be compactified to a circle of length L. Consider a string
wrapped nw on this circle; thus the total length of the string is LT = nwL. Let
the string carry np units of momentum along this string, say in the positive
y direction. At this moment we put no excitations traveling in the negative y
direction, though we will do that as well later.

The total energy and momentum on the string must have the form

E = P =
2πnp
L

=
2πnwnp
LT

(1.49)

The individual excitations carrying thus momentum can be in various harmonics
k on the string with length LT . . An excitation in the kth harmonic has energy
and momentum

ek = pk =
2πk

LT
(1.50)

Let there be mk excitations in the harmonic k. Then we must have

∞∑
k=1

kmk = nwnp (1.51)
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Our goal is to find the number N of sets {nk} which satisfy this relation; this
number N gives the degeneracy of states with the quantum numbers (1.49), and
the entropy of the vibrating string will then be given by

Smicro = lnN (1.52)

1.3.1 The partition function
The partition function of a system is defined as

Z[β] =
∑
states

e−βEstate (1.53)

where
β =

1

T
(1.54)

and T is the temperature. We first consider the partition function for a single
boson, then for a single fermion, and finally, for the case where we have fB
‘flavors’ of bosons and fF ‘flavors’ of fermions.

The partition function for a single boson

Consider just one bosonic fourier mode k. Each excitation of this mode has
energy ek = 2πk/LT . Since the number of excitations can be mk = 0, 1, 2, . . . ,
summing over various numbers of these excitations gives the contribution

ZBk =

∞∑
mk=0

e−βmkek =
1

1− e−βek
(1.55)

Since the various k harmonics describe independent sets of excitations, the cor-
responding contributions Zk need to be multiplied together. We can consider
the log of Z, where we find

lnZB =

∞∑
k=1

lnZBK = −
∞∑
k=1

ln[1− e−βek ] (1.56)

For large values of nw, np, the values of k are peaked at k � 1, where we can
approximate the sum over k by an integral

lnZB → −
∫ ∞

0

dk ln[1−e−βek ] = −LT
2π

∫ ∞
0

dek ln[1−e−βek ] =
LT
2πβ

π2

6
(1.57)

The partition function for a single fermions

A fermion mode can have only two possible occupation numbers mk = 0, 1.
Thus in place of (1.55) we get

ZFk =

1∑
mk=0

e−βmkek = 1 + e−βek (1.58)
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Again taking the log of ZF and approximating the sum over k by an integral,
we get

logZF → LT
2π

∫ ∞
0

dek ln[1 + e−βek ] =
LT
2πβ

π2

12
(1.59)

We see that lnZF = 1
2 lnZB , so a fermions counts as ‘half a boson’ for the

purposes of its contribution to the partition function.

Several flavors of bosons and fermions

Suppose we have fB bosonic degrees of freedom and fF fermionic degrees of
freedom. Since each degree of freedom gives independent excitations, the cor-
responding partition functions Z are multiplied together, which leads to a sum
over the corresponding logarithms

logZ = fB logZB + fF log fF = (fB +
1

2
fF )

πLT
12β

≡ c(πLT
12β

) (1.60)

where we have defined

c = fB +
1

2
fF (1.61)

The quantity c is called the ‘central charge’ and gives a measure of the effective
degrees of freedom of the system.

1.3.2 The thermodynamics of string vibrations

Let us now use the above partition function to compute various thermodynamics
quantities describing the vibrating string.

General relations

The average energy is given in terms of the partition function by

E =
1

Z
(−∂β)Z = −∂β lnZ (1.62)

Applying this to (1.60), we find

E =
cπLT
12β2

(1.63)

Thus if we put an energy E on the string, and assume that it is distributed
thermally among all possible excitations, then this thermal distribution will be
characterized by a temperature

T = β−1 =

√
12E

πLT c
(1.64)
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The entropy of the distribution is S = lnN , where N is the average number
of states that contribute to the partition function. Thus we can write

Z =
∑
states

e−βEstate ∼ eS−βE (1.65)

This gives
S = lnZ + βE (1.66)

Applying this to (1.60), we find

S =
cπLT

6β
=

√
cπLTE

3
(1.67)

1.3.3 The string with charges nw, np

Let us now apply these general relations to our case of the 2-charge extremal
system–the string with winding nw and momentum np.

Thermodynamic quantities

The string has 8 transverse directions in which it can vibrate, so fB = 8. By
supersymmetry, there are a corresponding number of fermionic flavors, so fF =
8. Thus

c = fB +
1

2
fF = 8 + 4 = 12 (1.68)

We have noted that
E =

2πnwnp
LT

, LT = nwL (1.69)

Then (1.64) gives

T =
2

L

√
np
nw

(1.70)

and (1.67) gives
S = 2

√
2π
√
n1np (1.71)

Qualitiative picture of the vibrating string

From the above computation we can extract a few other details. In a thermal
distribution, the average energy of an excitation is

ē ∼ T ∼
√
n1np

LT
(1.72)

From (1.50) we see then that that the generic quantum is in a harmonic

k̄ ∼ √n1np (1.73)
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on the multiwound string. Given that the total energy is (1.69), we find that
the number of quanta is

m̄ ∼ √n1np (1.74)

From (1.55) we can find the average occupation number of a bosonic energy
level ek

〈mk〉 = − 1

ZBk

1

ek
∂βZ

B
k =

1

eβek − 1
(1.75)

so for the generic quantum with ek ∼ β−1 we have

〈mk〉 ∼ 1 (1.76)

For fermionic levels,

〈mk〉 = − 1

ZFk

1

ek
∂βZ

F
k =

1

eβek + 1
(1.77)

so for the generic quantum with ek ∼ β−1 we again have

〈mk〉 ∼ 1 (1.78)

To summarize, there are a large number of ways to partition the energy into
different harmonics. One extreme possibility is to put all the energy into the
lowest harmonic k = 1; then the occupation number of this harmonic will be

m = n1np (1.79)

At the other extreme we can put all the energy into a single quantum in the
harmonic n1np; i.e.

k = n1np, mk = 1 (1.80)

But the generic state which contributes to the entropy has its typical excitations
in harmonics with k ∼ √n1np. There are ∼ √n1np such harmonic modes; and
the occupation number of each such mode is < mk >∼ 1. These details about
the generic state will be important to us later.

1.3.4 The Bekenstein entropy of the NS1P state
The Einstein metric is

ds2
E = H−

3
4 [−dt2+dx2

1+K(dt+dx1)2]+H
1
4 [dr2+r2dΩ2

3]+H
1
4

4∑
i=1

dxidxi (1.81)

In the limit r → 0, we get

dsE → r
3
2

Q
3
4
1

[−dt2+dx2
1]+

Qp

r
1
2Q

3
4
1

(dt+dx1)2+
Q

1
4
1

r
1
2

dr2+Q
1
4
1 r

3
2 dΩ2

3+
Q

1
4
1

r
1
2

4∑
i=1

dxidxi

(1.82)
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Now look at the hypersurface t = 0. The surface at a given value of r has the
following components to its area:

(i) The direction along x1 has a length

Lx1
=

Q
1
2
p

r
1
4Q

3
8
1

L (1.83)

(ii) The directions along the torus give

V4 =
Q

1
2
1

r
V (1.84)

(iii) The angular sphere gives

VΩ3
= 2π2Q

3
8
1 r

9
4 (1.85)

Thus the area of the horizon is

AH =

(
Q

1
2
p

r
1
4Q

3
8
1

L

)(
Q

1
2
1

r
V

)(
2π2Q

3
8
1 r

9
4

)
= 2π2LV Q

1
2
pQ

1
2
1 r (1.86)

Once again, we find that as we take r → 0, we get

AH → 0 (1.87)

So we still do not seem to have a black hole.
This time however, there is a difference: we do have, in fact a nonzero horizon

area; its just that in our present approxmation we are not able to see it.

1.3.5 The NS1-NS5-P black hole
The metric produced by such NS5 branes is

ds2
string = [−dt2 + dy2] +H5[dr2 + r2dΩ2

3] +H5dxidxi (1.88)

where
H5 = 1 +

Q5

r2
(1.89)

Here Q5 is proportional to the number n5 of NS5 branes

Q5 = α′n5 (1.90)

We get a dilaton
e2φ = H5 (1.91)
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We also get a Bµν field. Recall that the NS5 brane is the magnetic dual of the
NS1 brane. Thus the Bµν field lies along directions of the angular sphere S3

Bφψ = sin2 θ (1.92)

We can now write down the solution with NS1-NS5-P charges

ds2
string = H−1

1

[
(−dt2 + dx2

1) +K(dt+ dx1)2
]

+H5[dr2 + r2dΩ2
3] +

4∑
i=1

dxidxi

Btx1
= H−1

1 , Bφψ = sin2 θ

e2φ =
H5

H1

(1.93)

The horizon area has the following components

(i) The angular directions have the area

Aω3
= 2π2H

3
2
5 r

3 (1.94)

(ii) The torus directions have the volume

AT 4 = V (1.95)

(iii) The x1 direction has a length dominated by the term

Lx1
=
K

1
2

H
1
2
1

L (1.96)

Thus the overall area of the horizon in the string metric is

AstringH =
(

2π2H
3
2
5 r

3
)

(V )

(
K

1
2

H
1
2
1

L

)
= 2π2V Lr3H

3
2
5 H

− 1
2

1 K
1
2 (1.97)

The 10-D Einstein metric gEµν is related to the string metric gSµν by

gEµν = e−
φ
2 gSµν =

(
H1

H5

) 1
4

(1.98)

Thus

AE =

(
gEµν
gSµν

)4

=
H1

H5
Astring = 2π2V Lr3H

1
2
5 H

1
2
1 K

1
2 → 2π2V L

√
Q1Q5Qp

(1.99)
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Recalling that

Q1 =
g2α′3

V
n1, Q5 = α′n5, Qp =

g2α′4

V R2
np (1.100)

and that
G = 8π6g2α′4 (1.101)

we find that
Sbek =

AH
4G

= 2π
√
n1n5np (1.102)

The nonextremal gravity solution

We continue to use the compactification M9,1 → M4,1 × T 4 × S1. We have
charges NS1, NS5, P as before, but also extra energy that gives nonextremality.
The metric and dilaton are [?]

ds2
string = H−1

1 [−dt2+dy2+
r2
0

r2
(coshσdt+sinhσdy)2]+H5[

dr2

(1− r20
r2 )

+r2dΩ2
3]+

4∑
a=1

dzadza

(1.103)

e2φ =
H5

H1
(1.104)

where

H1 = 1 +
r2
0 sinh2 α

r2
, H5 = 1 +

r2
0 sinh2 γ

r2
(1.105)

The integer valued charges carried by this hole are

n̂1 =
V r2

0 sinh 2α

2g2α′3
(1.106)

n̂5 =
r2
0 sinh 2γ

2α′
(1.107)

n̂p =
R2V r2

0 sinh 2σ

2g2α′4
(1.108)

The energy (i.e. the mass of the black hole) is

E =
RV r2

0

2g2α′4
(cosh 2α+ cosh 2γ + cosh 2σ) (1.109)

The horizon is at r = r0. From the area of this horizon we find the Bekenstein
entropy

SBek =
A10

4G10
=

2πRV r3
0

g2α′4
coshα cosh γ coshσ (1.110)

The Hawking temperature is

TH = [(
∂S

∂E
)n̂1,n̂5,n̂p ]−1 =

1

2πr0 coshα cosh γ coshσ
(1.111)
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The extremal limit: ‘Three large charges, no nonextremality’

The extremal limit is obtained by taking

r0 → 0, α→∞, γ →∞, σ →∞ (1.112)

while holding fixed

r2
0 sinh2 α = Q1, r2

0 sinh2 γ = Q5, r2
0 sinh2 σ = Qp (1.113)

This gives the extremal hole we constructed earlier. For this case we have already
checked that the microscopic entropy agrees with the Bekenstein entropy (??).
It can be seen that in this limit the Hawking temperature is TH = 0.

Two large charges + nonextremality

We now wish to move away from the extremal 3-charge system, towards the
neutral Schwarzschild hole. For a first step, we keep two of the charges large;
let these be NS1, NS5. We will have a small amount of the third charge P, and
a small amount of nonextremality. The relevant limits are

r0, r0e
σ � r0e

α, r0e
γ (1.114)

Thus σ is finite but α, γ � 1. We are ‘close’ to the extremal NS1-NS5 state, so
we can hope that the excitations will be a small correction. The excitations will
be a ‘dilute’ gas among the large number of n̂1, n̂5 charges and a simple model
for these excitations might give us the entropy and dynamics of the system.

The BPS mass corresponding to the n̂1 NS1 branes is

MBPS
1 =

Rn̂1

α′
=

RV r2
0

2g2α′4
sinh 2α =

RV r2
0

2g2α′4
(cosh 2α− e−2α) ≈ RV r2

0

2g2α′4
cosh 2α

(1.115)
The BPS mass corresponding to the n̂5 NS5 branes is

MBPS
5 =

RV n̂5

g2α′3
=

RV r2
0

2g2α′4
sinh 2γ =

RV r2
0

2g2α′4
(cosh 2γ − e−2γ) ≈ RV r2

0

2g2α′4
cosh 2γ

(1.116)
Thus the energy (1.109) can be written as

E = MBPS
1 +MBPS

5 + ∆E, ∆E ≈ RV r2
0

2g2α′4
cosh 2σ (1.117)

The momentum is

P =
n̂p
R

=
RV r2

0

2g2α′4
sinh 2σ (1.118)

Note that

∆E + P ≈ RV r2
0

2g2α′4
e2σ, ∆E − P ≈ RV r2

0

2g2α′4
e−2σ (1.119)



1.3. THE ENTROPY OF A GAS OF VIBRATIONS 19

We wish to compute the entropy (1.110) in this limit. Note that

n̂1 =
V r2

0

2g2α′3
sinh 2α ≈ V r2

0

g2α′3
cosh2 α (1.120)

n̂5 =
r2
0

2α′
sinh 2γ ≈ r2

0

α′
cosh2 γ (1.121)

We then find

SBek ≈ 2π
√
n̂1n̂5 [

√
R

2
(∆E + P ) +

√
R

2
(∆E − P ) ] (1.122)

Let us now look at the microscopic description of this nonextremal state.
The NS1, NS5 branes generate an ‘effective string’ as before. In the extremal
case all the excitations were right movers (R) on this effective string, so that we
had the maximal possible momentum charge P for the given energy. For the non-
extremal case we will have momentum modes moving in both R,L directions.
Let the right movers carry np units of momentum and the left movers n̄p units
of (oppositely directed) momentum. Then (ignoring any interaction between
the R,L modes) we will have

∆E =
1

R
(np + n̄p), P =

1

R
(np − n̄p) (1.123)

Since we have ignored any interactions between the R,L modes the entropy
Smicro of this ‘gas’ of momentum modes will be the sum of the entropies of the
R,L excitations. Thus using (??) we write

Smicro = 2π
√
n̂1n̂5np + 2π

√
n̂1n̂5n̄p (1.124)

But using (1.123) in (1.122) we find

Smicro = 2π
√
n̂1n̂5 [

√
R

2
(∆E + P ) +

√
R

2
(∆E − P ) ] (1.125)

Comparing to (1.122) we find that

Smicro ≈ SBek (1.126)

We thus see that a simple model of the microscopic brane bound state de-
scribes well the entropy of this near extremal system.
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