TOPIC V

BLACK HOLES IN STRING THEORY

Lecture notes 1

Making black holes

How should we make a black hole in string theory?
A black hole forms when a large amount of mass is collected together. In classical general relativity, the resulting gravitational field then deforms spacetime to create a horizon. To make a black hole in string theory, we must use the elementary excitations - gravitons, strings, branes etc. - present in the theory. We should put a large number of these excitations together, and see if we get a black hole.

The simplest excitation is the graviton. But the graviton is massless, and so moves at the speed of light. While a black hole can be made from a sufficient number of massless particles, it is easier to start with excitations that are massive, since these can be made to stay at a given location.

String theory has extended objects like strings and branes. In their lowest energy state, the force of tension makes such objects collapse to a point, and we again get massless excitations like gravitons and gauge fields. To get a massive excitation, we should somehow stretch these objects to a nonzero size. The simplest way to do this is to compactify some directions of space. We can then wrap the extended object on these compact directions, causing it to have a nontrivial extent, and thus a nonzero mass.

Let us now follow this path, and see if we get black hole.

1.1 Wrapped strings

We start as follows:
(i) String theory lives in $9+1$ spacetime dimensions. We compactify p directions to circles; let these be the directions $x^{1}, \ldots x^{p}$. This leaves $9-p$ space directions noncompact. Thus we will get a black hole in $(9-p)+1$ spacetime dimensions.
(ii) We wrap a string along one of the compact directions, say x^{1}. In the noncompact directions, we let this string be at the origin: $\left\{x^{p+1}, \ldots x^{9}\right\}=0$. Let the length of the x^{1} circle be L. Then the energy of the wrapped string is

$$
\begin{equation*}
E=T_{N S 1} L \tag{1.1}
\end{equation*}
$$

From the viewpoint of the noncompact directions, this gives a point mass

$$
\begin{equation*}
m=T_{N S 1} L \tag{1.2}
\end{equation*}
$$

Figure 1.1: (a) The horizontal direction represents the noncompact space directions, while the vertical direction represents the compact directions. A string is wrapped on a compact circle. (b) From the viewpoint of the dimensionally reduced theory, we see only the noncompact directions. The string now appears as an object with some mass m.

Figure 1.2: (a) If we take many separately wound strings, then we would be describing many separate masses. (b) We take one multiwound string; this is a bound state, and so corresponds to one massive object.
at the location $\left\{x^{p+1}, \ldots x^{9}\right\}=0$ (fig.1.1).
(iii) We want a large amount of mass to make a big black hole. Thus we take n_{1} strings wrapped as above, with

$$
\begin{equation*}
n_{1} \gg 1 \tag{1.3}
\end{equation*}
$$

(iv) If we have n_{1} separately wrapped strings (as in fig.1.2(a)), then we would be trying to make n_{1} separate tiny black holes. We wish to make one large black hole. Thus we need to consider a bound state of these n_{1} strings. We have already seen that such a bound state has a simple form: the string wraps n_{1} times around x^{1} before closing. From the viewpoint of the noncompact directions, this gives an object of mass

$$
\begin{equation*}
m=n_{1} T_{N S 1} L \tag{1.4}
\end{equation*}
$$

at the location $\left\{x^{p+1}, \ldots x^{9}\right\}=0$ (fig.1.2(b)).
Now we ask: has this construction resulted in a black hole? To answer this question, we must compute the metric produced by the above mentioned strings.

1.1.1 The metric produced by strings

Let us take type IIA string theory for concreteness, and for the moment let all directions be noncompact. It will be convenient to begin by looking at the string metric $g_{\mu \nu}^{S}$, though later we will consider the Einstein metric $g_{\mu \nu}^{E}$ as well.

Let us separate a direction x^{1} along which we will presently place our strings. Introducing polar coordinates in the directions transverse to x^{1}, the flat spacetime metric is

$$
\begin{equation*}
d s_{S}^{2}=-d t^{2}+d x_{1}^{2}+d r^{2}+r^{2} d \Omega_{7}^{2} \tag{1.5}
\end{equation*}
$$

Now consider n_{1} string stretching along the direction x^{1}, placed at the location $r=0$ in the transverse space. The metric produced by these strings has the form []

$$
\begin{equation*}
d s_{S}^{2}=H^{-1}\left[-d t^{2}+d x_{1}^{2}\right]+d r^{2}+r^{2} d \Omega_{7}^{2} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
H=1+\frac{Q_{1}}{r^{6}} \tag{1.7}
\end{equation*}
$$

Metrics of strings and branes will be crucial in our study, so let us analyze this metric in some detail:
(i) The string has a 2-dimensional worldsheet spanning the directions t, x_{1}. We see that the metric is Lorentz invariant in this t, x_{1} space. This invariance reflects the fact that the action of the string is just given by the area of the worldsheet.
(ii) The coefficient function H is a harmonic function in the 7-dimensional space transverse to the brane:

$$
\begin{equation*}
\triangle H \equiv \sum_{i=2}^{8} \frac{\partial^{2}}{\partial x_{i}^{2}} H=0 \tag{1.8}
\end{equation*}
$$

This is analogous to the fact that in the Schwarzschild metric we get $g_{t t}=$ $-\left(1-\frac{2 M}{r}\right)$, which is harmonic in 3-dimensional space.
(iii) The quantity Q_{1} is proportional to the number of strings n_{1}

$$
\begin{equation*}
Q_{1} \propto n_{1} \tag{1.9}
\end{equation*}
$$

We assume that $n_{1} \gg 1$ to get strong sources whose metric can be well described by a classical approximation.

The string is a charged object, and radiates the gauge field $B_{a b}$. The coupling of the string to the gauge field has the form of an integral along the worldsheet: $\int B d \mathcal{A}$. The worldsheet of the string lies along t, x_{1}. Thus we expect to generate a gauge field $B_{t x_{1}}$. We have

$$
\begin{equation*}
B_{t x_{1}}=H=1+\frac{Q_{1}}{r^{6}} \tag{1.10}
\end{equation*}
$$

This gauge field is analogous to the field produced by a point charge q in electromagnetism. In the electromagnetic case the worldline is along t, and the coupling has the form: $q \int A d l$. This results in a gauge field component $A_{t}=\frac{q}{r}$, which is just the scalar potential produced by a stationary point charge. This scalar potential is harmonic: $\triangle A_{t}=0$. Similarly, $B_{t x_{1}}$ is harmonic in the transverse space $x^{2}, \ldots x^{9}$. Note that we can add a constant to $B_{t x_{1}}$ by a gauge transformation. Thus we can make $B_{t x_{1}} \rightarrow 0$ at infinity, and this potential then looks entirely analogous to the electromagnetic case.

The gravitational solution produced by the string has one more nontrivial component: the dilaton ϕ. Recall that from an M-theory perspective, the string is given by a M2 brane wrapped on the direction x^{11}. The tension of the M brane tends to squeeze this direction to a smaller value near the location of the branes. But the quantity e^{ϕ} reflects the size of the x^{11} direction. Thus we expect that e^{ϕ} will approach smaller values as we approach $r=0$. We have

$$
\begin{equation*}
e^{\phi}=H^{-1}=\left(1+\frac{Q_{1}}{r^{6}}\right)^{-1} \tag{1.11}
\end{equation*}
$$

We see that as $r \rightarrow 0$

$$
\begin{equation*}
e^{\phi} \approx \frac{r^{6}}{Q_{1}} \rightarrow 0 \tag{1.12}
\end{equation*}
$$

so $\phi \rightarrow-\infty$ and the x^{11} circle gets pinched to zero length.
Let us summarize the gravitational solution produced by elementary strings lying along x_{1}

$$
\begin{align*}
d s_{S}^{2} & =H^{-1}\left[-d t^{2}+d x_{1}^{2}\right]+d r^{2}+r^{2} d \Omega_{7}^{2} \\
B_{t x_{1}} & =H^{-1} \\
e^{2 \phi} & =H^{-1} \tag{1.13}
\end{align*}
$$

with

$$
\begin{equation*}
H=1+\frac{Q_{1}}{r^{6}} \tag{1.14}
\end{equation*}
$$

a harmonic function in the transverse 8-dimensional space. What is remarkable is that we can replace H by any harmonic function, and still get a solution to the field equations. Thus we can take

$$
\begin{equation*}
H=1+\frac{q_{1}}{\left|\vec{x}-\vec{x}_{1}\right|^{6}}+\frac{q_{2}}{\left|\vec{x}-\vec{x}_{2}\right|^{6}}+\cdots+\frac{q_{k}}{\left|\vec{x}-\vec{x}_{k}\right|^{6}} \tag{1.15}
\end{equation*}
$$

where $\vec{x}_{1}, \vec{x}_{2}, \ldots \vec{x}_{k}$ are points in the 8 -dimensional transverse space. This solution corresponds to string sources with strengths q_{i} at locations \vec{x}_{i}, with all strings stretching along the direction x_{1}.

1.1.2 Compactifying directions

In the above discussion we had $9+1$ noncompact dimensions. Let us now see how we can compactify p of these directions and move towards the black hole solution we desire.

Compactifying x_{1}

The string above stretched for an infinite length along the x_{1} direction. But a black hole should look like a localized object in spacetime. Thus the direction x_{1} must be among the directions we compactify.

We see that the solution (1.13) is independent of x_{1}. Thus it remains a solution if we assume that

$$
\begin{equation*}
0 \leq x_{1}<L_{1} \tag{1.16}
\end{equation*}
$$

and that we have the identification

$$
\begin{equation*}
x_{1}=0 \quad \leftrightarrow \quad x_{1}=L_{1} \tag{1.17}
\end{equation*}
$$

Thus compactification along the direction of the string does not change the algebraic form of the solution.

Compacitfying a transverse direction x_{2}

Now supposed we wish to compactify a transverse direction like x_{2} on a circle of length L_{2}. A solution with such a compactification would be periodic under the shift

$$
\begin{equation*}
x_{2} \rightarrow x_{2}+L_{2} \tag{1.18}
\end{equation*}
$$

Unlike the situation with x_{1}, the solution (1.13) is not periodic under shifts of x_{2}. To get a solution with the required periodicity, we take a 1-dimensional array of string sources along the x_{2} direction, placed at locations

$$
\begin{equation*}
x_{2}=n L_{2}, \quad-\infty<n<\infty \tag{1.19}
\end{equation*}
$$

Thus the harmonic function H has the form

$$
\begin{equation*}
H=1+\sum_{n=-\infty}^{\infty} \frac{Q_{1}}{\left(r^{\prime 2}+\left(x_{2}-n L_{2}\right)^{2}\right)^{3}} \tag{1.20}
\end{equation*}
$$

where

$$
\begin{equation*}
r^{\prime 2}=\sum_{i=3}^{9} x_{i}^{2} \tag{1.21}
\end{equation*}
$$

Bu construction, the functions appearing in the solution (1.13) are now periodic under (1.18), and we have compactified the transverse direction x_{2}.

We will actually be interested in a useful approximation of the above solution. We normally think of the compact directions as having a fixed, small size, perhaps of order planck length. The length scale set by Q_{1}, on the other hand will be large, since $Q_{1} \propto n_{1}$, and we make a large black hole by taking $n_{1} \gg 1$. Thus we wish to consider the limit

$$
\begin{equation*}
L_{2} \ll Q_{1}^{\frac{1}{6}} \tag{1.22}
\end{equation*}
$$

In this limit the sum in (1.20) can be replaced by an integral

$$
\begin{align*}
\sum_{n=-\infty}^{\infty} \frac{Q_{1}}{\left(r^{\prime 2}+\left(x_{2}-n L_{2}\right)^{2}\right)^{3}} & \approx \int_{n=-\infty}^{\infty} \frac{Q_{1}}{\left(r^{\prime 2}+\left(x_{2}-n L_{2}\right)^{2}\right)^{3}} \\
& =\frac{3 \pi}{8 L_{2}} \frac{1}{r^{\prime 5}} \tag{1.23}
\end{align*}
$$

Thus H takes the form

$$
\begin{equation*}
H=1+\frac{Q_{1}^{\prime}}{r^{\prime 5}} \tag{1.24}
\end{equation*}
$$

which is a harmonic function in the noncompact space $x^{3}, \ldots x^{9}$, which is now 7-dimensional.

Proceeding in this way, we find that if we compactify x_{1} and $p-1$ other directions, then the solution has the form (1.13) with

$$
\begin{equation*}
H=1+\frac{Q_{1}^{\prime \prime}}{r^{\prime \prime(7-p)}} \tag{1.25}
\end{equation*}
$$

where $r^{\prime \prime}$ is the radial coordinate in the noncompact directions.
We will be interested in the case where we compactify x_{1} and 4 other directions. In that case the harmonic function has the form

$$
\begin{equation*}
H=1+\frac{Q_{1}^{\prime \prime}}{r^{\prime \prime 2}} \tag{1.26}
\end{equation*}
$$

1.1.3 Looking for a horizon

In the above discussion we have worked with the string metric $g_{a b}^{S}$. The physics of black holes was, on the other hand, is naturally described in the Einstein metric $g_{a b}^{E}$. For example the entropy formula

$$
\begin{equation*}
S_{b e k}=\frac{A}{4 G} \tag{1.27}
\end{equation*}
$$

has the area of the horizon A measured using the Einstein metric. Thus we start by converting the solution (1.13) to the Einstein metric.

We have

$$
\begin{equation*}
g_{a b}^{E}=e^{-\frac{\phi}{2}} g_{a b}^{S} \tag{1.28}
\end{equation*}
$$

This gives

$$
\begin{equation*}
d s_{E}^{2}=H^{-\frac{3}{4}}\left[-d t^{2}+d x_{1}^{2}\right]+H^{\frac{1}{4}}\left[d r^{2}+r^{2} d \Omega_{3}^{2}\right]+H^{\frac{1}{4}} \sum_{i=1}^{4} d x_{i} d x_{i} \tag{1.29}
\end{equation*}
$$

To look for a horizon, we consider a surface of constant r, and take the limit $r \rightarrow 0$. A constant r surface is a cylindrical 8-dimensional surface, with the following structure:
(i) In the transverse directions, we have a S^{3} of radius $H^{\frac{1}{8}}$. The area of this sphere is

$$
\begin{equation*}
A_{S^{3}}=\left(2 \pi^{2}\right) H^{\frac{3}{8}} \tag{1.30}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\Omega^{3}}=2 \pi^{2} \tag{1.31}
\end{equation*}
$$

is the volume of a 3 -sphere of unit radius.
(ii) The direction x^{1} has the length

$$
\begin{equation*}
L_{x^{1}}=H^{-\frac{3}{8}} L_{1} \tag{1.32}
\end{equation*}
$$

(iii) The directions along the T^{4} have a volume

$$
\begin{equation*}
V_{4}=H^{\frac{1}{2}} V_{4} \tag{1.33}
\end{equation*}
$$

Thus the overall area of the surface at radius $r=r_{0}$ is

$$
\begin{equation*}
A_{H}=\left(\left(2 \pi^{2}\right) H^{\frac{3}{8}} r^{3}\right)\left(H^{-\frac{3}{8}} L_{1}\right)\left(H^{\frac{1}{2}} V\right)=2 \pi^{2} L V H^{\frac{1}{2}} r^{3} \approx 2 \pi^{2} L V Q_{1}^{\frac{1}{2}} r^{2} \tag{1.34}
\end{equation*}
$$

We see that in the limit $r_{0} \rightarrow 0$, we get

$$
\begin{equation*}
A_{H} \rightarrow 0 \tag{1.35}
\end{equation*}
$$

and we have not succeeded in getting a black hole.
It is not hard to see the reason for our failure. The strings wrap around the direction x^{1}. Their tension pinches this circle, making it have zero length at the location of the strings. We will now see that our failure to get a nonzero A_{H} here is a good thing, since a nonzero A_{H} would have led to an immediate problem for string theory.

The entropy of the NS1 solution

Since $A_{H}=0$, we find that the Bekenstein entropy is

$$
\begin{equation*}
S_{b e k}=\frac{A_{H}}{4 G}=0 \tag{1.36}
\end{equation*}
$$

Let us compare this to the microscopic entropy $S_{\text {micro }}$ of our system. We have taken a bound state of n_{1} strings, with no excitations on these strings. We have seen in (??) that the degeneracy of such a bound state is

$$
\begin{equation*}
\mathcal{N}=256 \tag{1.37}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S_{\text {micro }}=\ln [256] \approx 0 \tag{1.38}
\end{equation*}
$$

The symbol ≈ 0 here means that $S_{\text {micro }}$ is a fixed number, rather than a number that grows with n_{1}. We take $n_{1} \gg$ to make a good classical solution fro our string source. If A_{H} was nonzero for this classical solution, then it would be something that increased with n_{1}, and this would contradict (1.38). As things have turned out, we can write

$$
\begin{equation*}
S_{b e k}=S_{\text {micro }} \approx 0 \tag{1.39}
\end{equation*}
$$

and string theory has saved itself from a problem.

1.2 The NS1-P solution

The tension of the NS1 strings had pinched the circle x^{1}, making the horizon area zero. What should we do to make the x^{1} direction not pinch?

To get a idea of what we need, consider the energy of the wrapped strings without, for the moment, considering their backreaction on the metric. The energy is

$$
\begin{equation*}
E_{N S 1}=n_{1} T_{N S 1} L_{1} \tag{1.40}
\end{equation*}
$$

This energy is minimized for $L_{1}=0$, which is why the tension of the strings pinches the x^{1} circle to zero at the location of the strings.

We thus need to add something whose energy will increase when L_{1} is decreased. Consider a graviton carrying n_{p} units of momentum along the x^{1}. The energy of this momentum mode will be

$$
\begin{equation*}
E_{P}=\frac{2 \pi n_{p}}{L_{1}} \tag{1.41}
\end{equation*}
$$

This energy increases when L_{1} is decreased. Assuming that the directions $x_{1}, \ldots x_{4}$ and y are compactified, one finds that the metric of such a graviton mode is

$$
\begin{equation*}
d s_{\text {string }}^{2}=H^{-1}\left[-d t^{2}+d x_{1}^{2}+K\left(d t+d x_{1}\right)^{2}\right]+\left[d r^{2}+r^{2} d \Omega_{3}^{2}\right]+\sum_{i=1}^{4} d x_{i} d x_{i} \tag{1.42}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{Q_{p}}{r^{2}} \tag{1.43}
\end{equation*}
$$

and the gauge field and dilaton vanish

$$
\begin{equation*}
B_{\mu \nu}=0, \quad e^{2 \phi}=1 \tag{1.44}
\end{equation*}
$$

The quantity Q_{p} is proportional to the number of units of momentum

$$
\begin{equation*}
Q_{p}=\frac{g^{2} \alpha^{4}}{V R^{2}} n_{p} \tag{1.45}
\end{equation*}
$$

Now we take both NS1 and P charges. The solution is

$$
\begin{align*}
d s_{\text {string }}^{2} & =H_{1}^{-1}\left[\left(-d t^{2}+d x_{1}^{2}\right)+K\left(d t+d x_{1}\right)^{2}\right]+\left[d r^{2}+r^{2} d \Omega_{3}^{2}\right]+\sum_{i=1}^{4} d x_{i} d x_{i} \\
B_{t x_{1}} & =H^{-1} \\
e^{2 \phi} & =H^{-1} \tag{1.46}
\end{align*}
$$

1.2.1 Microscopic entropy of the NS1P bound state

We have a bound state of n_{1} strings and n_{p} units of momentum. We have seen that this bound state is degenerate: there are

$$
\begin{equation*}
\mathcal{N} \approx e^{2 \sqrt{2} \pi \sqrt{n_{1} n_{p}}} \tag{1.47}
\end{equation*}
$$

states with the same mass and charge. These different states correspond to different ways in which the momentum n_{p} can be carried along the multiwound string as travelling waves. Thus the microscopic entropy is

$$
\begin{equation*}
S_{\text {micro }}=\ln \mathcal{N}=2 \sqrt{2} \pi \sqrt{n_{1} n_{p}} \tag{1.48}
\end{equation*}
$$

This time we have an entropy that increases with the charges n_{1}, n_{p}. Let us now compute the area of the horizon.

1.3 The entropy of a gas of vibrations

Let a direction y be compactified to a circle of length L. Consider a string wrapped n_{w} on this circle; thus the total length of the string is $L_{T}=n_{w} L$. Let the string carry n_{p} units of momentum along this string, say in the positive y direction. At this moment we put no excitations traveling in the negative y direction, though we will do that as well later.

The total energy and momentum on the string must have the form

$$
\begin{equation*}
E=P=\frac{2 \pi n_{p}}{L}=\frac{2 \pi n_{w} n_{p}}{L_{T}} \tag{1.49}
\end{equation*}
$$

The individual excitations carrying thus momentum can be in various harmonics k on the string with length L_{T}. . An excitation in the k th harmonic has energy and momentum

$$
\begin{equation*}
e_{k}=p_{k}=\frac{2 \pi k}{L_{T}} \tag{1.50}
\end{equation*}
$$

Let there be m_{k} excitations in the harmonic k. Then we must have

$$
\begin{equation*}
\sum_{k=1}^{\infty} k m_{k}=n_{w} n_{p} \tag{1.51}
\end{equation*}
$$

Our goal is to find the number \mathcal{N} of sets $\left\{n_{k}\right\}$ which satisfy this relation; this number \mathcal{N} gives the degeneracy of states with the quantum numbers (1.49), and the entropy of the vibrating string will then be given by

$$
\begin{equation*}
S_{\text {micro }}=\ln \mathcal{N} \tag{1.52}
\end{equation*}
$$

1.3.1 The partition function

The partition function of a system is defined as

$$
\begin{equation*}
Z[\beta]=\sum_{\text {states }} e^{-\beta E_{\text {state }}} \tag{1.53}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\frac{1}{T} \tag{1.54}
\end{equation*}
$$

and T is the temperature. We first consider the partition function for a single boson, then for a single fermion, and finally, for the case where we have f_{B} 'flavors' of bosons and f_{F} 'flavors' of fermions.

The partition function for a single boson

Consider just one bosonic fourier mode k. Each excitation of this mode has energy $e_{k}=2 \pi k / L_{T}$. Since the number of excitations can be $m_{k}=0,1,2, \ldots$, summing over various numbers of these excitations gives the contribution

$$
\begin{equation*}
Z_{k}^{B}=\sum_{m_{k}=0}^{\infty} e^{-\beta m_{k} e_{k}}=\frac{1}{1-e^{-\beta e_{k}}} \tag{1.55}
\end{equation*}
$$

Since the various k harmonics describe independent sets of excitations, the corresponding contributions Z_{k} need to be multiplied together. We can consider the \log of Z, where we find

$$
\begin{equation*}
\ln Z^{B}=\sum_{k=1}^{\infty} \ln Z_{K}^{B}=-\sum_{k=1}^{\infty} \ln \left[1-e^{-\beta e_{k}}\right] \tag{1.56}
\end{equation*}
$$

For large values of n_{w}, n_{p}, the values of k are peaked at $k \gg 1$, where we can approximate the sum over k by an integral

$$
\begin{equation*}
\ln Z^{B} \rightarrow-\int_{0}^{\infty} d k \ln \left[1-e^{-\beta e_{k}}\right]=-\frac{L_{T}}{2 \pi} \int_{0}^{\infty} d e_{k} \ln \left[1-e^{-\beta e_{k}}\right]=\frac{L_{T}}{2 \pi \beta} \frac{\pi^{2}}{6} \tag{1.57}
\end{equation*}
$$

The partition function for a single fermions

A fermion mode can have only two possible occupation numbers $m_{k}=0,1$. Thus in place of (1.55) we get

$$
\begin{equation*}
Z_{k}^{F}=\sum_{m_{k}=0}^{1} e^{-\beta m_{k} e_{k}}=1+e^{-\beta e_{k}} \tag{1.58}
\end{equation*}
$$

Again taking the \log of Z^{F} and approximating the sum over k by an integral, we get

$$
\begin{equation*}
\log Z^{F} \rightarrow \frac{L_{T}}{2 \pi} \int_{0}^{\infty} d e_{k} \ln \left[1+e^{-\beta e_{k}}\right]=\frac{L_{T}}{2 \pi \beta} \frac{\pi^{2}}{12} \tag{1.59}
\end{equation*}
$$

We see that $\ln Z^{F}=\frac{1}{2} \ln Z^{B}$, so a fermions counts as 'half a boson' for the purposes of its contribution to the partition function.

Several flavors of bosons and fermions

Suppose we have f_{B} bosonic degrees of freedom and f_{F} fermionic degrees of freedom. Since each degree of freedom gives independent excitations, the corresponding partition functions Z are multiplied together, which leads to a sum over the corresponding logarithms

$$
\begin{equation*}
\log Z=f_{B} \log Z^{B}+f_{F} \log f^{F}=\left(f_{B}+\frac{1}{2} f_{F}\right) \frac{\pi L_{T}}{12 \beta} \equiv c\left(\frac{\pi L_{T}}{12 \beta}\right) \tag{1.60}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
c=f_{B}+\frac{1}{2} f_{F} \tag{1.61}
\end{equation*}
$$

The quantity c is called the 'central charge' and gives a measure of the effective degrees of freedom of the system.

1.3.2 The thermodynamics of string vibrations

Let us now use the above partition function to compute various thermodynamics quantities describing the vibrating string.

General relations

The average energy is given in terms of the partition function by

$$
\begin{equation*}
E=\frac{1}{Z}\left(-\partial_{\beta}\right) Z=-\partial_{\beta} \ln Z \tag{1.62}
\end{equation*}
$$

Applying this to (1.60), we find

$$
\begin{equation*}
E=\frac{c \pi L_{T}}{12 \beta^{2}} \tag{1.63}
\end{equation*}
$$

Thus if we put an energy E on the string, and assume that it is distributed thermally among all possible excitations, then this thermal distribution will be characterized by a temperature

$$
\begin{equation*}
T=\beta^{-1}=\sqrt{\frac{12 E}{\pi L_{T} c}} \tag{1.64}
\end{equation*}
$$

The entropy of the distribution is $S=\ln \mathcal{N}$, where \mathcal{N} is the average number of states that contribute to the partition function. Thus we can write

$$
\begin{equation*}
Z=\sum_{\text {states }} e^{-\beta E_{\text {state }}} \sim e^{S-\beta E} \tag{1.65}
\end{equation*}
$$

This gives

$$
\begin{equation*}
S=\ln Z+\beta E \tag{1.66}
\end{equation*}
$$

Applying this to (1.60), we find

$$
\begin{equation*}
S=\frac{c \pi L_{T}}{6 \beta}=\sqrt{\frac{c \pi L_{T} E}{3}} \tag{1.67}
\end{equation*}
$$

1.3.3 The string with charges n_{w}, n_{p}

Let us now apply these general relations to our case of the 2-charge extremal system-the string with winding n_{w} and momentum n_{p}.

Thermodynamic quantities

The string has 8 transverse directions in which it can vibrate, so $f_{B}=8$. By supersymmetry, there are a corresponding number of fermionic flavors, so $f_{F}=$ 8. Thus

$$
\begin{equation*}
c=f_{B}+\frac{1}{2} f_{F}=8+4=12 \tag{1.68}
\end{equation*}
$$

We have noted that

$$
\begin{equation*}
E=\frac{2 \pi n_{w} n_{p}}{L_{T}}, \quad L_{T}=n_{w} L \tag{1.69}
\end{equation*}
$$

Then (1.64) gives

$$
\begin{equation*}
T=\frac{2}{L} \sqrt{\frac{n_{p}}{n_{w}}} \tag{1.70}
\end{equation*}
$$

and (1.67) gives

$$
\begin{equation*}
S=2 \sqrt{2} \pi \sqrt{n_{1} n_{p}} \tag{1.71}
\end{equation*}
$$

Qualitiative picture of the vibrating string

From the above computation we can extract a few other details. In a thermal distribution, the average energy of an excitation is

$$
\begin{equation*}
\bar{e} \sim T \sim \frac{\sqrt{n_{1} n_{p}}}{L_{T}} \tag{1.72}
\end{equation*}
$$

From (1.50) we see then that that the generic quantum is in a harmonic

$$
\begin{equation*}
\bar{k} \sim \sqrt{n_{1} n_{p}} \tag{1.73}
\end{equation*}
$$

on the multiwound string. Given that the total energy is (1.69), we find that the number of quanta is

$$
\begin{equation*}
\bar{m} \sim \sqrt{n_{1} n_{p}} \tag{1.74}
\end{equation*}
$$

From (1.55) we can find the average occupation number of a bosonic energy level e_{k}

$$
\begin{equation*}
\left\langle m_{k}\right\rangle=-\frac{1}{Z_{k}^{B}} \frac{1}{e_{k}} \partial_{\beta} Z_{k}^{B}=\frac{1}{e^{\beta e_{k}}-1} \tag{1.75}
\end{equation*}
$$

so for the generic quantum with $e_{k} \sim \beta^{-1}$ we have

$$
\begin{equation*}
\left\langle m_{k}\right\rangle \sim 1 \tag{1.76}
\end{equation*}
$$

For fermionic levels,

$$
\begin{equation*}
\left\langle m_{k}\right\rangle=-\frac{1}{Z_{k}^{F}} \frac{1}{e_{k}} \partial_{\beta} Z_{k}^{F}=\frac{1}{e^{\beta e_{k}}+1} \tag{1.77}
\end{equation*}
$$

so for the generic quantum with $e_{k} \sim \beta^{-1}$ we again have

$$
\begin{equation*}
\left\langle m_{k}\right\rangle \sim 1 \tag{1.78}
\end{equation*}
$$

To summarize, there are a large number of ways to partition the energy into different harmonics. One extreme possibility is to put all the energy into the lowest harmonic $k=1$; then the occupation number of this harmonic will be

$$
\begin{equation*}
m=n_{1} n_{p} \tag{1.79}
\end{equation*}
$$

At the other extreme we can put all the energy into a single quantum in the harmonic $n_{1} n_{p}$; i.e.

$$
\begin{equation*}
k=n_{1} n_{p}, \quad m_{k}=1 \tag{1.80}
\end{equation*}
$$

But the generic state which contributes to the entropy has its typical excitations in harmonics with $k \sim \sqrt{n_{1} n_{p}}$. There are $\sim \sqrt{n_{1} n_{p}}$ such harmonic modes; and the occupation number of each such mode is $<m_{k}>\sim 1$. These details about the generic state will be important to us later.

1.3.4 The Bekenstein entropy of the NS1P state

The Einstein metric is

$$
\begin{equation*}
d s_{E}^{2}=H^{-\frac{3}{4}}\left[-d t^{2}+d x_{1}^{2}+K\left(d t+d x_{1}\right)^{2}\right]+H^{\frac{1}{4}}\left[d r^{2}+r^{2} d \Omega_{3}^{2}\right]+H^{\frac{1}{4}} \sum_{i=1}^{4} d x_{i} d x_{i} \tag{1.81}
\end{equation*}
$$

In the limit $r \rightarrow 0$, we get
$d s^{E} \rightarrow \frac{r^{\frac{3}{2}}}{Q_{1}^{\frac{3}{4}}}\left[-d t^{2}+d x_{1}^{2}\right]+\frac{Q_{p}}{r^{\frac{1}{2}} Q_{1}^{\frac{3}{4}}}\left(d t+d x_{1}\right)^{2}+\frac{Q_{1}^{\frac{1}{4}}}{r^{\frac{1}{2}}} d r^{2}+Q_{1}^{\frac{1}{4}} r^{\frac{3}{2}} d \Omega_{3}^{2}+\frac{Q_{1}^{\frac{1}{4}}}{r^{\frac{1}{2}}} \sum_{i=1}^{4} d x_{i} d x_{i}$

Now look at the hypersurface $t=0$. The surface at a given value of r has the following components to its area:
(i) The direction along x_{1} has a length

$$
\begin{equation*}
L_{x_{1}}=\frac{Q_{p}^{\frac{1}{2}}}{r^{\frac{1}{4}} Q_{1}^{\frac{3}{8}}} L \tag{1.83}
\end{equation*}
$$

(ii) The directions along the torus give

$$
\begin{equation*}
V_{4}=\frac{Q_{1}^{\frac{1}{2}}}{r} V \tag{1.84}
\end{equation*}
$$

(iii) The angular sphere gives

$$
\begin{equation*}
V_{\Omega_{3}}=2 \pi^{2} Q_{1}^{\frac{3}{8}} r^{\frac{9}{4}} \tag{1.85}
\end{equation*}
$$

Thus the area of the horizon is

$$
\begin{equation*}
A_{H}=\left(\frac{Q_{p}^{\frac{1}{2}}}{r^{\frac{1}{4}} Q_{1}^{\frac{3}{8}}} L\right)\left(\frac{Q_{1}^{\frac{1}{2}}}{r} V\right)\left(2 \pi^{2} Q_{1}^{\frac{3}{8}} r^{\frac{9}{4}}\right)=2 \pi^{2} L V Q_{p}^{\frac{1}{2}} Q_{1}^{\frac{1}{2}} r \tag{1.86}
\end{equation*}
$$

Once again, we find that as we take $r \rightarrow 0$, we get

$$
\begin{equation*}
A_{H} \rightarrow 0 \tag{1.87}
\end{equation*}
$$

So we still do not seem to have a black hole.
This time however, there is a difference: we do have, in fact a nonzero horizon area; its just that in our present approxmation we are not able to see it.

1.3.5 The NS1-NS5-P black hole

The metric produced by such NS5 branes is

$$
\begin{equation*}
d s_{s t r i n g}^{2}=\left[-d t^{2}+d y^{2}\right]+H_{5}\left[d r^{2}+r^{2} d \Omega_{3}^{2}\right]+H_{5} d x_{i} d x_{i} \tag{1.88}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{5}=1+\frac{Q_{5}}{r^{2}} \tag{1.89}
\end{equation*}
$$

Here Q_{5} is proportional to the number n_{5} of NS5 branes

$$
\begin{equation*}
Q_{5}=\alpha^{\prime} n_{5} \tag{1.90}
\end{equation*}
$$

We get a dilaton

$$
\begin{equation*}
e^{2 \phi}=H_{5} \tag{1.91}
\end{equation*}
$$

We also get a $B_{\mu \nu}$ field. Recall that the NS5 brane is the magnetic dual of the NS1 brane. Thus the $B_{\mu \nu}$ field lies along directions of the angular sphere S^{3}

$$
\begin{equation*}
B_{\phi \psi}=\sin ^{2} \theta \tag{1.92}
\end{equation*}
$$

We can now write down the solution with NS1-NS5-P charges

$$
\begin{align*}
d s_{\text {string }}^{2} & =H_{1}^{-1}\left[\left(-d t^{2}+d x_{1}^{2}\right)+K\left(d t+d x_{1}\right)^{2}\right]+H_{5}\left[d r^{2}+r^{2} d \Omega_{3}^{2}\right]+\sum_{i=1}^{4} d x_{i} d x_{i} \\
B_{t x_{1}} & =H_{1}^{-1}, \quad B_{\phi \psi}=\sin ^{2} \theta \\
e^{2 \phi} & =\frac{H_{5}}{H_{1}} \tag{1.93}
\end{align*}
$$

The horizon area has the following components
(i) The angular directions have the area

$$
\begin{equation*}
A_{\omega_{3}}=2 \pi^{2} H_{5}^{\frac{3}{2}} r^{3} \tag{1.94}
\end{equation*}
$$

(ii) The torus directions have the volume

$$
\begin{equation*}
A_{T^{4}}=V \tag{1.95}
\end{equation*}
$$

(iii) The x_{1} direction has a length dominated by the term

$$
\begin{equation*}
L_{x_{1}}=\frac{K^{\frac{1}{2}}}{H_{1}^{\frac{1}{2}}} L \tag{1.96}
\end{equation*}
$$

Thus the overall area of the horizon in the string metric is

$$
\begin{equation*}
A_{H}^{\text {string }}=\left(2 \pi^{2} H_{5}^{\frac{3}{2}} r^{3}\right)(V)\left(\frac{K^{\frac{1}{2}}}{H_{1}^{\frac{1}{2}}} L\right)=2 \pi^{2} V L r^{3} H_{5}^{\frac{3}{2}} H_{1}^{-\frac{1}{2}} K^{\frac{1}{2}} \tag{1.97}
\end{equation*}
$$

The $10-\mathrm{D}$ Einstein metric $g_{\mu \nu}^{E}$ is related to the string metric $g_{\mu \nu}^{S}$ by

$$
\begin{equation*}
g_{\mu \nu}^{E}=e^{-\frac{\phi}{2}} g_{\mu \nu}^{S}=\left(\frac{H_{1}}{H_{5}}\right)^{\frac{1}{4}} \tag{1.98}
\end{equation*}
$$

Thus

$$
\begin{equation*}
A^{E}=\left(\frac{g_{\mu \nu}^{E}}{g_{\mu \nu}^{S}}\right)^{4}=\frac{H_{1}}{H_{5}} A^{\text {string }}=2 \pi^{2} V L r^{3} H_{5}^{\frac{1}{2}} H_{1}^{\frac{1}{2}} K^{\frac{1}{2}} \rightarrow 2 \pi^{2} V L \sqrt{Q_{1} Q_{5} Q_{p}} \tag{1.99}
\end{equation*}
$$

Recalling that

$$
\begin{equation*}
Q_{1}=\frac{g^{2} \alpha^{\prime 3}}{V} n_{1}, \quad Q_{5}=\alpha^{\prime} n_{5}, \quad Q_{p}=\frac{g^{2} \alpha^{\prime 4}}{V R^{2}} n_{p} \tag{1.100}
\end{equation*}
$$

and that

$$
\begin{equation*}
G=8 \pi^{6} g^{2} \alpha^{\prime 4} \tag{1.101}
\end{equation*}
$$

we find that

$$
\begin{equation*}
S_{b e k}=\frac{A_{H}}{4 G}=2 \pi \sqrt{n_{1} n_{5} n_{p}} \tag{1.102}
\end{equation*}
$$

The nonextremal gravity solution

We continue to use the compactification $M_{9,1} \rightarrow M_{4,1} \times T^{4} \times S^{1}$. We have charges NS1, NS5, P as before, but also extra energy that gives nonextremality. The metric and dilaton are [?]
$d s_{\text {string }}^{2}=H_{1}^{-1}\left[-d t^{2}+d y^{2}+\frac{r_{0}^{2}}{r^{2}}(\cosh \sigma d t+\sinh \sigma d y)^{2}\right]+H_{5}\left[\frac{d r^{2}}{\left(1-\frac{r_{0}^{2}}{r^{2}}\right)}+r^{2} d \Omega_{3}^{2}\right]+\sum_{a=1}^{4} d z_{a} d z_{a}$

$$
\begin{equation*}
e^{2 \phi}=\frac{H_{5}}{H_{1}} \tag{1.103}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{1}=1+\frac{r_{0}^{2} \sinh ^{2} \alpha}{r^{2}}, \quad H_{5}=1+\frac{r_{0}^{2} \sinh ^{2} \gamma}{r^{2}} \tag{1.105}
\end{equation*}
$$

The integer valued charges carried by this hole are

$$
\begin{align*}
\hat{n}_{1} & =\frac{V r_{0}^{2} \sinh 2 \alpha}{2 g^{2} \alpha^{\prime 3}} \tag{1.106}\\
\hat{n}_{5} & =\frac{r_{0}^{2} \sinh 2 \gamma}{2 \alpha^{\prime}} \tag{1.107}\\
\hat{n}_{p} & =\frac{R^{2} V r_{0}^{2} \sinh 2 \sigma}{2 g^{2} \alpha^{\prime 4}} \tag{1.108}
\end{align*}
$$

The energy (i.e. the mass of the black hole) is

$$
\begin{equation*}
E=\frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}}(\cosh 2 \alpha+\cosh 2 \gamma+\cosh 2 \sigma) \tag{1.109}
\end{equation*}
$$

The horizon is at $r=r_{0}$. From the area of this horizon we find the Bekenstein entropy

$$
\begin{equation*}
S_{B e k}=\frac{A_{10}}{4 G_{10}}=\frac{2 \pi R V r_{0}^{3}}{g^{2} \alpha^{\prime 4}} \cosh \alpha \cosh \gamma \cosh \sigma \tag{1.110}
\end{equation*}
$$

The Hawking temperature is

$$
\begin{equation*}
T_{H}=\left[\left(\frac{\partial S}{\partial E}\right)_{\hat{n}_{1}, \hat{n}_{5}, \hat{n}_{p}}\right]^{-1}=\frac{1}{2 \pi r_{0} \cosh \alpha \cosh \gamma \cosh \sigma} \tag{1.111}
\end{equation*}
$$

The extremal limit: 'Three large charges, no nonextremality'

The extremal limit is obtained by taking

$$
\begin{equation*}
r_{0} \rightarrow 0, \quad \alpha \rightarrow \infty, \quad \gamma \rightarrow \infty, \quad \sigma \rightarrow \infty \tag{1.112}
\end{equation*}
$$

while holding fixed

$$
\begin{equation*}
r_{0}^{2} \sinh ^{2} \alpha=Q_{1}, \quad r_{0}^{2} \sinh ^{2} \gamma=Q_{5}, \quad r_{0}^{2} \sinh ^{2} \sigma=Q_{p} \tag{1.113}
\end{equation*}
$$

This gives the extremal hole we constructed earlier. For this case we have already checked that the microscopic entropy agrees with the Bekenstein entropy (??). It can be seen that in this limit the Hawking temperature is $T_{H}=0$.

Two large charges + nonextremality

We now wish to move away from the extremal 3-charge system, towards the neutral Schwarzschild hole. For a first step, we keep two of the charges large; let these be NS1, NS5. We will have a small amount of the third charge P, and a small amount of nonextremality. The relevant limits are

$$
\begin{equation*}
r_{0}, r_{0} e^{\sigma} \ll r_{0} e^{\alpha}, r_{0} e^{\gamma} \tag{1.114}
\end{equation*}
$$

Thus σ is finite but $\alpha, \gamma \gg 1$. We are 'close' to the extremal NS1-NS5 state, so we can hope that the excitations will be a small correction. The excitations will be a 'dilute' gas among the large number of \hat{n}_{1}, \hat{n}_{5} charges and a simple model for these excitations might give us the entropy and dynamics of the system.

The BPS mass corresponding to the \hat{n}_{1} NS1 branes is

$$
\begin{equation*}
M_{1}^{B P S}=\frac{R \hat{n}_{1}}{\alpha^{\prime}}=\frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} \sinh 2 \alpha=\frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}}\left(\cosh 2 \alpha-e^{-2 \alpha}\right) \approx \frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} \cosh 2 \alpha \tag{1.115}
\end{equation*}
$$

The BPS mass corresponding to the \hat{n}_{5} NS5 branes is

$$
\begin{equation*}
M_{5}^{B P S}=\frac{R V \hat{n}_{5}}{g^{2} \alpha^{\prime 3}}=\frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} \sinh 2 \gamma=\frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}}\left(\cosh 2 \gamma-e^{-2 \gamma}\right) \approx \frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} \cosh 2 \gamma \tag{1.116}
\end{equation*}
$$

Thus the energy (1.109) can be written as

$$
\begin{equation*}
E=M_{1}^{B P S}+M_{5}^{B P S}+\Delta E, \quad \Delta E \approx \frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} \cosh 2 \sigma \tag{1.117}
\end{equation*}
$$

The momentum is

$$
\begin{equation*}
P=\frac{\hat{n}_{p}}{R}=\frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} \sinh 2 \sigma \tag{1.118}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\Delta E+P \approx \frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} e^{2 \sigma}, \quad \Delta E-P \approx \frac{R V r_{0}^{2}}{2 g^{2} \alpha^{\prime 4}} e^{-2 \sigma} \tag{1.119}
\end{equation*}
$$

We wish to compute the entropy (1.110) in this limit. Note that

$$
\begin{align*}
& \hat{n}_{1}=\frac{V r_{0}^{2}}{2 g^{2} \alpha^{\prime 3}} \sinh 2 \alpha \approx \frac{V r_{0}^{2}}{g^{2} \alpha^{\prime 3}} \cosh ^{2} \alpha \tag{1.120}\\
& \hat{n}_{5}=\frac{r_{0}^{2}}{2 \alpha^{\prime}} \sinh 2 \gamma \approx \frac{r_{0}^{2}}{\alpha^{\prime}} \cosh ^{2} \gamma \tag{1.121}
\end{align*}
$$

We then find

$$
\begin{equation*}
S_{B e k} \approx 2 \pi \sqrt{\hat{n}_{1} \hat{n}_{5}}\left[\sqrt{\frac{R}{2}(\Delta E+P)}+\sqrt{\frac{R}{2}(\Delta E-P)}\right] \tag{1.122}
\end{equation*}
$$

Let us now look at the microscopic description of this nonextremal state. The NS1, NS5 branes generate an 'effective string' as before. In the extremal case all the excitations were right movers (R) on this effective string, so that we had the maximal possible momentum charge P for the given energy. For the nonextremal case we will have momentum modes moving in both R, L directions. Let the right movers carry n_{p} units of momentum and the left movers \bar{n}_{p} units of (oppositely directed) momentum. Then (ignoring any interaction between the R, L modes) we will have

$$
\begin{equation*}
\Delta E=\frac{1}{R}\left(n_{p}+\bar{n}_{p}\right), \quad P=\frac{1}{R}\left(n_{p}-\bar{n}_{p}\right) \tag{1.123}
\end{equation*}
$$

Since we have ignored any interactions between the R,L modes the entropy $S_{\text {micro }}$ of this 'gas' of momentum modes will be the sum of the entropies of the R,L excitations. Thus using (??) we write

$$
\begin{equation*}
S_{\text {micro }}=2 \pi \sqrt{\hat{n}_{1} \hat{n}_{5} n_{p}}+2 \pi \sqrt{\hat{n}_{1} \hat{n}_{5} \bar{n}_{p}} \tag{1.124}
\end{equation*}
$$

But using (1.123) in (1.122) we find

$$
\begin{equation*}
S_{\text {micro }}=2 \pi \sqrt{\hat{n}_{1} \hat{n}_{5}}\left[\sqrt{\frac{R}{2}(\Delta E+P)}+\sqrt{\frac{R}{2}(\Delta E-P)}\right] \tag{1.125}
\end{equation*}
$$

Comparing to (1.122) we find that

$$
\begin{equation*}
S_{m i c r o} \approx S_{B e k} \tag{1.126}
\end{equation*}
$$

We thus see that a simple model of the microscopic brane bound state describes well the entropy of this near extremal system.

Bibliography

