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BREAKDOWN OF THE SEMICLASSICAL
APPROXIMATION
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Lecture notes 1

The essential question

1.1 The issue

The black hole information paradox is closely tied to the question: when does
the semiclassical approximation break down in gravity? Let us reiterate the
puzzle with this perspective:

(i) Suppose we make a black hole by taking a shell of matter and letting it
collapse. When the shell crosses its horizon radius, the curvature around the
shell is low compared to the planck scale

R� 1

l2p
(1.1)

so it would seem that we can use the classical approximation to follow its col-
lapse.

(ii) When the shell reaches a singularity at r = 0, the curvature at the shell
becomes planck scale and the semiclassical approximation can be violated. But
the light cones point inwards at all points inside the horizon, so any physics
at the singularity cannot influence the horizon region as long as causality is
respected.

(iii) The no-hair theorem tells us that the quantum state at the horizon
of this classical metric is the vacuum |0〉. Then we find that Hawking’s pair
creation process leads to an ever-growing entanglement between the hole and
its radiation.

The possible resolution of the puzzle thus fall into two categories:

(a) We can try to violate causality, by postulating nonlocal effects, or vio-
lating some basic tenet of quantum physics. We will mention several attempts
along such lines in section ??.

(b) We can violate the no-hair theorem and thus change the nature of the
horizon. This is what we get with fuzzballs, which have a surface like any other
object; radiation from this surface carries information the same way it does from
a piece of burning paper.
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The difficulty with (a) is that we have not found any such violations of
locality or causality in string theory. The string itself is an extended object, so
we may call it nonlocal. But the propagation of information along the string
respects causality: waves on the string do not move at speeds faster than light.

If we are to argue for (b), we have to explain why the semiclassical approx-
imation breaks down at the horizon. More precisely, we have to find a second
domain of breakdown for the semiclassical approximation, which is different
from the domain (1.1). Investigating this question will lead us to a foundational
role played by the Bekenstein entropy of the hole. We will also be led to a
picture where we think not in terms of a given spacetime metric but in terms
of superspace – the space of all such metrics.

1.1.1 Sharpening the question

Let us begin with some preliminary comments which serve to focus the issue.
It is sometimes argued that the horizon must be a vacuum region, because of
the equivalence principle. This principle says that when we fall freely in a
gravitational field, we feel no forces at all. Thus, the argument goes, one should
fall freely through the horizon of a black hole and feel nothing.

But this is clearly a circular argument. If we fall from an aircraft, we feel
no forces on the way down, but we do feel a force when we reach the surface of
the earth. The reason is that the equivalence principle fails when we reach the
natural size of the gravitating object, which in this example is the radius RE of
the earth.

So the question becomes: what is the natural size of black hole microstates?
If (1.1) was the only condition needed for the validity of the semiclassical ap-
proximation, then there would indeed be no structure anywhere except at r = 0,
and the equivalence principle would be valid at the horizon. But (1.1) is based
on the observation that the only length scale arising from c, ~, G is lp, the planck
length. We have already noted that this need not be true in black holes, where
we put together a large number of quanta N . In this situation there could arise
new length scales of the form Nαlp, and in fact in section ?? we found that the
size of bound states in string theory was always order horizon size.

This size is a characteristic of the energy eigenstates of the system: we
are saying that states with energy E have a wavefunction that has nontrivial
structure at a radius r = 2GE. The present question however is a dynamical
one: what happens to a collapsing shell as it reaches this radius? In principle is
no difficulty in answering this dynamical question, since in quantum theory the
entire evolution is determined once we know the energy eigenstates. We proceed
as follows:

(a) Imagine the fuzzball states to be enclosed in a spherical box of some
radius Rbox; we can let Rbox = 100M where M is of order the mass of the hole
that we wish to consider. We can put vanishing boundary conditions on our
quantum fields at r = Rbox.
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(b) The fuzzball states radiate quanta to the region r > 2M , so the region
r . 2M does not yield a stationary state by itself. But these quanta will reflect
back from the boundary we have put at r = Rbox, and set up standing waves in
the region 2M . r < Rbox. With this situation, the entire system does have a
discrete set of eigenstates |Ek〉.

(c) The collapsing shell at a large radius (say at r = 50M) will be some
linear combination of these eigenstates

|ψ〉shell =
∑
k

Ck|Ek〉 (1.2)

(d) The evolution of the shell then follows from quantum mechanics:

|ψ(t)〉shell =
∑
k

Cke
−iEkt|Ek〉 (1.3)

When the shell reaches the radius r ≈ 2M , the shell will automatically evolve
to a linear superposition of fuzzball states.

Thus in a sense there is nothing to show; once we find that microstates in
string theory are fuzzballs with structure at the horizon, then a collapsing shell
will automatically change to fuzzballs when it reaches r ≈ 2M . What we can
ask however is the following. If we start from the semiclassical approximation
to gravity, what physical effect can we point to which will cause a departure
from semiclassical evolution? Let us now address this issue.

1.1.2 Tunneling to fuzzball states

Consider a shell made of gravitons, each directed radially inwards. Let the
spacetime have 3+1 noncompact dimensions, and let the remaining directions
of string theory be compactified to circles. In the state |ψ〉shell, the compact
directions are trivially factored with the noncompact directions. By contrast,
fuzzballs states have a locally nontrivial fibering of a compact circle over the
noncompact directions. It is not hard to check that there is a path to tunnel
from the shell state to fuzzball states. A simple way to see this is to consider
the collision of two gravitons, and ask if we can end up with a KK-monopole
- anti-KK-monopole pair. The answer is yes, since using S,T dualities we can
map the KK monopoles to D6 branes, and then to any other elementary object
in string theory.

While we can have the transition

|ψ〉shell → |Fk〉 (1.4)

from the shell state to a fuzzball state, the amplitude for such a transition will
be very low. After all we are tunneling from one macroscopic object to another,
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and while such transitions are possible, they are highly suppressed because the
action involved in very large compared to ~. Let us perform a very crude
estimate of the transition amplitude A. On general grounds we have

A ∼ e−Scl (1.5)

where Scl is the action for the transition. The gravity action has the form

S =
1

16πG

∫ √
−g d4xR (1.6)

We estimate its value as follows:

(i) We use r ∼ GM as the length scale to estimate all contributions.

(ii) We have R ∼ (length)−2, so we take

R ∼ (GM)−2 (1.7)

(iii) The integration measure gives∫ √
−g d4x ∼ (GM)4 (1.8)

(iv) Then (1.6) gives
S ∼ GM2 (1.9)

(v) With this, the probability P of the transition (1.4) becomes

P = |A|2 ∼ e4παGM2

(1.10)

where α is a number of order unity, and we have included a factor of 4π in the
exponent for later convenience.

Since GM2 ∼ (M/mp)
2, this is a very small probability, as expected. But

to find the overall probability of transitioning to fuzzballs, we should multiply
P by the number of fuzzball states that we can transition to. The number of
fuzzball statesN is given through the Bekenstein entropy

N ∼ eSbek = e
A
4G = e4πGM2

(1.11)

From (1.10) and (1.11), We see that it is possible that the largeness of N
cancels the smallness of P , to give

N P ∼ 1 (1.12)
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which would make the transition to fuzzballs an order unity effect, rather than
an extremely suppressed effect. We therefore conjecture that there is a second
domain of breakdown of the semiclassical approximation, given by (1.12), which
is different from the conventionally discussed domain

R &
1

l2p
(1.13)

Let us now make a few observations related to the conjecture (1.12):

(i) One may wonder why we do not see effects arising from (1.12) in other
situations, like in the dynamics of the sun. The reason is as follows. Since the
sun has a radius Rsun much larger than its Schwarzschild radius, we find that
the gravitational action in (1.9) is much larger

S ∼ 1

G
(Rsun)4(Rsun)−2 = GR2

sun � GM2 (1.14)

so the probability P is much smaller. Even more importantly, the entropy of
the sun is vastly lower than the entropy of a black hole with the same mass. ’t
Hooft has argued that the entropy of normal matter is bounded as

Smatter .

(
A

G

) 3
4

� A

4G
(1.15)

so the number of states N for the sun is much smaller than (1.11). Thus instead
of (1.12) we get PN � 1. Thus this new mode of breakdown of the semiclassi-
cal approximation does not arise to astrophysical processes not involving black
holes.

(ii) Note that the resolution of the black hole puzzle being proposed here is
the opposite of the ‘subtle corrections’ argument proposed by Maldacena in 2001
and in a slightly different way by Hawking on 2004. Hawking’s 2004 argument
begins by noting that there can be subleading contributions to the Euclidean
path integral of order

P ∼ e−Scl (1.16)

where
Scl ∼ Sbek (1.17)

But it is then argued that such small corrections can provide the modifications
required to remove the entanglement between the hole and its radiation, and to
encode the information of the hole in the radiation. We have seen in section ??
that one cannot in fact remove the entanglement in this way. The relation (1.12)
is very different: here one argues that the small probability P for transition to
a fuzzball state is offset by the largeness of the number of fuzzballs, so that the
actual violation of the semiclassical evolution is by order unity.
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(iii) We can interpret the condition (1.12) for breakdown of the semiclassical
approximation in a path integral language as follows. A path integral amplitude

A ∼
∫
D[g]e−

i
~Scl[g] (1.18)

has two contributions:

(i) A factor e−
i
~Scl[g] depending on the classical action of the process. For a

macroscopic process, we have Scl � ~, and the physics is determined to leading
order by extremising Scl.

(ii) A measure factor
∫
D[g]. Roughly speaking, this counts the number of

states that contribute to the process of interest. In usual macroscopic processes,
the measure term is subleading compared to the classical action term; it is an
order ~ quantum correction to the leading order classical process.

But in the black hole we have an unusually large measure factor ∼ Exp[Sbek],
arising from the large value of the Bekenstein entropy. In fact the measure factor
becomes comparable to the effect of the classical action. This makes gravita-
tional collapse a very quantum process, and the semiclassical approximation
breaks down.

(iv) The argument leading to (1.12) has been very rough, since we are only
looking for a possible qualitative reason for breakdown of the semiclassical ap-
proximation. If we wish to pursue this argument in more detail, then we must
show that in (1.10) the value of α satisfies

α ≤ 1 (1.19)

in order that we cancel the exponential suppression by the factor (1.11). In []
it was suggested that in fact we might have α = 1. This suggestion comes from
looking at a slightly different problem: the emission of a massive shell from a
black hole. Let the hole have mass M , and the emitted shell have mass m. The
remaining black hole has mass M −m. It was shown in [] that the probability
of this emission Pemission was given in terms of the drop in entropy of the hole:

Pemission ∼ e−[Sbek(M)−Sbek(M−m)] (1.20)

For m�M , this probability gives the Hawking radiation rate for quanta with
mass m. But the relation (1.20) holds for all m, so in particular we can apply
it for m = M . This tells us that the probability for the black hole to tunnel to
the state of a shell is

Pbh→shell ∼ e−Sbek (1.21)

Note that here we start with some particular state of the black hole.
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In quantum theory tunnel probabilities are symmetric: the probability to
tunnel one way through a barrier is the same as the probability to tunnel the
other way through the barrier. Thus we would have

Pshell→bh ∼ e−Sbek (1.22)

where we are tunneling to a particular black hole state. Comparing to (1.10),
we find

α = 1 (1.23)

1.1.3 A toy model

Let us now look at a simple quantum mechanical model to illustrate the physics
behind (1.12). We proceed in the following steps:

(a) First consider a particle of mass m in the potential depicted in fig.??:

V (x) = ∞, 0 ≤ x
= 0, 0 < x < a

= V0, a < x < b

= 0, b < x (1.24)

There is a ‘well’ with potential V = 0 in the range 0 < x < a, a barrier of
height V0 in the range a < x < b, and then an ‘outside’ region b < x < c where
V = 0 again. We start with the particle in the well 0 < x < a, and consider its
tunneling to the ‘outside’.

By taking the limit c → ∞, we can make the number of states N in the
region b < x < c as large as we want. But the rate of tunneling through the
barrier does not diverge; instead it saturates to a finite value, determined by the
height and width of the barrier. How does this fact relate to (1.12), where we
conjectured an enhancement of tunneling if there were a large number of final
states?

In the model of fig.??, we may have a large number of states in the region
b < x < c, but the particle wavefunction does not have a large overlap with all
these states. The particles tunnels out to the region near x = b, and the region
x >> b is irrelevant to the tunneling rate. There are only a few states in the
region near x = b, and, and so there is no large enhancement of tunneling. If we
work in terms of energy eigenstates |Ek〉, then doubling length of the ‘outside’
region will double the level density of the |Ek〉, but this will be compensated by
the fact that the overlap with any given |Ek〉 will drop by a factor 2.

(b) What we need to illustrate the phenomenon we seek is a model tunnel-
ing happens in many directions simultaneously. Let us start by considering a
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particle in a well, without the possibility of tunneling to other states. Consider
a 1-dimensional potential well depicted in fig.??

V (x) = ∞, 0 ≤ x
= 0, 0 < x < a

= V0, a < x (1.25)

Now consider a particle of mass m in N dimensions, with potential

V (x1, x2, . . . xN ) = V (x1) + V (x2) + · · ·+ V (xN ) (1.26)

We assume that the particle is trapped in the well, with a wavefunction

Ψ(x1, x2, . . . xN ) = ψ(x1)ψ(x2) . . . ψ(xN ) (1.27)

The potential well now is an \ dimensional box

0 < xi < a, i = 1, 2, . . .N (1.28)

For each coordinate xi, the wavefunction is mostly in the well 0 < xi < a; only
a small part of this wavefunction penetrates under the barrier∫ a

0

dxi|ψ(xi)|2 = 1− ε, ε� 1 (1.29)

But when we look at the full N dimensional problem, we find that the norm in
the well is

||Ψ||2well =

(∫ a

0

dx1|ψ(x1)|2
)(∫ a

0

dx2|ψ(x2)|2
)
. . .

(∫ a

0

dxN |ψ(xN )|2
)

= (1−ε)N ≈ e−εN

(1.30)
Suppose we choose N to be large enough that

εN � 1 (1.31)

Then we find that
||Ψ||2well � 1 (1.32)

so that most of the wavefunction is under the barrier, instead of in the well.

(c) Now let us allow tunneling in this N dimensional example. We start
with the potential and wavefunction as in (b) above, but at t = 0 change the
potential V (x) to (1.24). In each direction xi, we assume that the wavefunction
leaks out of the barrier very slowly∫ z

0

dxi|ψ(xi, t)|2 ≈ (1− ε)e−ε̃t (1.33)

But in the full \ dimensional problem the probability in the well decays as

||Ψ(t)||2well =

(∫ a

0

dx1|ψ(x1, t)|2
)
. . .

(∫ a

0

dxN |ψ(xN , t)|2
)
≈ (1− ε)N e−ε̃N t

(1.34)
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If we choose N such that
ε̃N � 1 (1.35)

Then the probability for the particle to be in the well decays very quickly, in a
time

ttunnel ∼
1

ε̃N
(1.36)

(d) Let us now relate this toy examples to the idea of tunneling into fuzzball
states. Consider a shell of mass M collapsing to make a black hole. We have
the following:

(i) When the radius if the shell is R � 2M , there are no other alternative
solutions of the gravity theory with the same quantum numbers. Thus the only
states accessible to the shell are the shell states at different values if R, and we
have a 1-dimensional evolution problem. The shell continues to evolve towards
smaller values of R.

(ii) When R ≈ 2M , we have a large number of new states available with the
same quantum numbers as the shell. These are the Exp[Sbek] fuzzball states
|Fk〉. Now we have the situation like that of (c) above: there are many directions
in which the shell state can tunnel. In analogy with (1.36), the state of the shell
quickly departs from its semiclassically expected form, and becomes a linear
superposition of fuzzball states |Fk〉.

1.1.4 The equivalence principle

As we have noted above, a crucial question in the black hole puzzle is whether
we can use the equivalence principle at the horizon of the hole. Using this
principe, requires us to transform to coordinates that ‘fall along’ with an infalling
observer. In these coordinates the observer notices nothing as he travels through
a gravitational field. If we can continue to use such coordinates as he passes
through the horizon, then we will be forced to conclude that nothing happens
at the horizon, and so semiclassical physics continues to hold there.

The equivalence principle is central to the black hole problem because the
natural coordinates for the exterior of the hole – the Schwarzschild coordinates
– fail at the horizon. If we can change to new coordinates that are smooth at
the horizon, then we can continue to the interior of the horizon. This coordi-
nate change was discussed in section ??. If on the other hand there could be
something wrong with this change of coordinates at the horizon, then we cannot
argue hat the horizon is a vacuum region, and then we avoid the information
paradox.

Let us therefore begin by recalling how the equivalence principle is derived.
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Gravity as a flat space theory

1.2 The bubble of nothing

We have seen that once matter falls into a horizon, it must continue to fall
inwards till it reaches the singularity. The reason is that inside the horizon
light cones point in the direction of smaller r, so it is not possible for a particle
trajectory to move towards larger r, or even to stay at the same radial position
r.

Suppose a ball of matter is compressed to a radius where it is close to being
inside its horizon, but is not yet inside its horizon. On may imagine that in this
situation the ball would contract till it becomes smaller than its horizon radius,
and then keep contracting to a singularity. In other words, it should be ‘very
hard’ to keep a ball just larger than horizon radius from collapsing to a black
hole.

This expectation is in fact correct for a ball made of normal matter. A
neutron star is a very dense object, supported by the degeneracy pressure of
the neutrons. But if the mass of a neutron star exceeds about 2.5 Solar masses,
then this degeneracy pressure cannot support the star, and it collapses to a
black hole.

A more general result in this direction is Buchdahl’s stability limit. Suppose
the matter is a perfect fluid, with energy density ρ and pressure p. Assume that
this fluid makes a spherically symmetric static ball of mass N and radius R.
Further, we assume that dρ/dr < 0; for a normal equation of state, this implies
a pressure gradient that pushes the fluid outwards, against the inward pull of
gravity. The Buchdahl limit then says that we must have

R >
9

4
GM (1.37)

In other words, such a star cannot come arbitrarily close to the Schwarzschild
radius r = 2GM . The derivation of this limit follows with some algebra applied
to the Einstein equations. One finds that if R is smaller than the bound (1.37),
then the pressure p needed to hold the star against collapse grows too quickly
as we move to smaller r, and diverges before we reach the center r = 0.

Fuzzball states are stable against collapse. But we also expect that the
nontrivial structure in a fuzzball state can be confined to a region

r < 2GM + ε (1.38)

with ε� GM . Such an expectation runs counter to the bound (1.37). But we
note that fuzzball solutions do not satisfy the conditions assumed in Buchdahl’s
derivation. Buchdahl assumed that the solution was spherically symmetric and
static. A static solution is one where the metric coefficients are time inde-
pendent, and further the off diagonal coefficients between the time and space
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directions vanish:

∂

∂t
gµν = 0 (1.39)

gti = 0 (1.40)

Fuzzballs, are not spherically symmetric solutions to the gravity theory. We can
take a fuzzball wavefunctional |F 〉, and consider all the wavefunctionals |F (θ, φ)〉
that we get by rotating it through different angles. We can then consider the
wavefuctional

|ψ〉 =

∫
sin θdθdφ |F (θ, φ)〉 (1.41)

which would, by construction, be spherically symmetric. But even if the original
state |F 〉 was well approximated by a classical solution, the state ψ〉 would not
be – it would be a quantum superposition of different configurations, each of
which lacked spherical symmetry. It is not clear if we can apply Buchdahl’s
derivation – which assumed a classical fluid – to such a state.

Further, fuzzballs are not in general static. The solutions of [], for example
are explicitly time dependent. The solutions of [] are time-independent, but
have nonvanishing metric coefficients gti; in fact these off diagonal terms give
rise to ergoregions, which lead to the radiation expected from nonextremal black
hole microstates.

In spite of these differences, one may have the feeling that once a fuzzball
solution is confined to a region very close to r = 2GM , it must collapse and
create a horizon. After all, gravity is pulling inwards on whatever the fuzzball
is made of, and what effect would counter this strong pull in the region (1.38)?

We will now look at a simple example in gravity, where the energy density
does not come from a perfect fluid, but rather from variation in size of an extra
dimension. We will see that though the energy density is positive, the region
containing this energy density expands outwards rather than inwards. Thus this
example – which is called Witten’s ‘bubble of nothing’ – indicates that novel
features like extra dimensions and branes can yield a behavior which is different
from the behavior of ordinary matter.

We start with Minkowski space, where in addition to the usual 3+1 spacetime
dimensions, we have an extra compact circle

ds2 = −dt2 + dx2 + dy2 + dz2 + dw2 (1.42)

where w has the identification

w ↔ w + 2πR (1.43)

Witten argued that this spacetime is unstable to tunneling to a configuration
where the circle w gets pinched off in some region. This tunneling is given by
an instanton, which is a Euclidean solution to the field equations. Thus we take
the Euclidean metric

ds2 = dt2 + dx2 + dy2 + dz2 + dw2 (1.44)
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We write this in polar coordinates

ds2 = dt2 + r2dΩ2
3 + dw2 (1.45)

where

dΩ2
3 = dΘ2 + sin2 ΘdΩ2

2 = dΘ2 + sin2 Θ(dθ2 + sin2 θdφ2) (1.46)

In this spacetime we have the instanton solution given by the 5-d Euclidean
Schwarzschild metric

ds2 =
dr2

1− r̄2

r2

+ r2dΩ2
3 + (1− r̄2

r2
)dw2 (1.47)

where r ≥ r̄. To see the bubble obtained through tunneling, we must find a hy-
persurface in the Euclidean solution where the fields have no normal derivative,
and join the Euclidean solution here to a Lorentzian one. The hypersurface
we take to be the equator of Ω3; i.e., the surface Θ = π/2. We continue off
this surface to other values of Θ in the imaginary Θ direction; this gives the
Lorentzian spacetime we seek. Thus we write

Θ =
π

2
+ iψ (1.48)

and then (1.47) gives

ds2 =
dr2

1− r̄2

r2

− r2dψ2 + r2 cosh2 ψ(dθ2 + sin2 θdφ2) + (1− r̄2

r2
)dw2 (1.49)

To understand this Lorentzian solution, we first look at the region r � r̄. Here
we get

ds2 = dr2 − r2dψ2 + r2 cosh2 ψ(dθ2 + sin2 θdφ2) + dw2 (1.50)

The r, ψ directions give Minkowski spacetime expressed in Rindler coordinates.
Thus writing

T = r sinhψ, R = r coshψ (1.51)

we find
ds2 = −dT 2 + dR2 +R2(dθ2 + sin2 θdφ2) + dw2 (1.52)

which is 3+1 Minkowski spacetime times the compact circle w.
The nontrivial effects are near the region r ≈ r̄. In the coordinates (1.51)

the location r = r̄ reads

T = r̄ sinhψ, X = r̄ coshψ (1.53)

This is the ‘bubble wall’, which starts at T = 0, X = r̄ with zero velocity at
ψ = 0, and then asymptotes to the speed of light (dt + dX) at ψ → ∞. Thus
we see that the bubble wall expands outwards after formation.
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1.2.1 Stress tensor
What we will do now is the following:

(i) We will write the 4+1 dimensional solution (1.50) in a dimensionally
reduced form; i.e, we will consider T,R, θ, φ as giving a 3+1 dimensional space-
time, and the length of the w circle as giving a scalar field Φ on this 3+1
spacetime.

(ii) We compute the stress tensor Tµν of this scalar field Φ. The energy den-
sity of Φ will be positive, as expected, but the pressure in the angular directions
will be negative.

(iii) We will observe that the components of Tµν diverge in the limit r → r̄.
But we will note that this divergence is not a manifestation of a real singularity
at r = r̄, since the overall 4+1 dimensional spacetime is smooth – it is only its
dimensional reduction which becomes singular.

Let us now carry out these steps:

(i) The gravity action in the full 4+1 dimensional spacetime is

S =
1

16πG

∫
d5x
√
−g(5)R(5) (1.54)

We use indices µ, ν, . . . for the 3+1 spacetime ψ, r, θ, φ. We write

gww = eC (1.55)

and observe that for our solutions of interest we have

gwµ = 0 (1.56)

To make the gravity action be the Einstein one in 3+1 dimensions, we define

gEµν = e
1
2Cgµν (1.57)

It is also convenient to rescale C

Φ =

√
3

2
C (1.58)

Then the action (1.54) becomes

S =
2πR

16πG

∫
d4x
√
−g(4)

[
R(4) − 1

2
∂µΦ∂µΦ

]
(1.59)

so we just have normal Einstein gravity in 3+1 dimensions coupled to a conven-
tionally normalized free scalar Φ. The solution (1.50) gives

Φ =

√
3

2
ln

(
1− r̄2

r2

)
(1.60)
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ds2
E = −r2(1− r̄

2

r2
)

1
2 dψ2+

dr2

(1− r̄2

r2 )
1
2

+r2(1− r̄
2

r2
)

1
2 cosh2 t(dθ2+sin2 θdφ2) (1.61)

(ii) The stress tensor is

Tµν = − 2√
−g

δS

δgµν
= ∂µΦ∂νΦ− 1

2
gµν∂λΦ∂λΦ (1.62)

We find the components

Tµν =


f

f
−f

−f

 , f = 2(r2 − r̄2)−
3
2 r−3 (1.63)

Thus the energy density is positive

ρ = −Tψψ = f > 0 (1.64)

The pressure in the radial direction is positive:

pr = T rr = f > 0 (1.65)

while the pressures in the angular directions are negative

pθ = T θθ = −f < 0, pφ = Tφφ = −f < 0 (1.66)

are negative. Note that since the pressure is not isotropic, we are not in the
situation of a perfect fluid that was assumed in deriving Buchdahl’s limit.

(iii) We see that the energy density and pressures all diverge as r̄̄r. This
appears to a singularity from the perspective of 3+1 dimensional physics, but as
we know, the full solution in 4+1 dimensions (1.50) is smooth, so the singularity
is only an apparent one. Further, even though the positive energy density ρ
might suggest that the bubble should collapse inwards, what we find is that the
bubble actually accelerates outwards.

To summarize, this example shows that some of our intuition from the be-
havior of normal matter may not hold in the actual situation we find in string
theory where the fuzzball solutions will involve extra dimensions, branes etc.



Lecture notes 2

An overall picture of collapse

Let us use the toy examples discussed so far to postulate a picture of what
happens to a collapsing shell of matter.

We have seen that the equivalence principle is not something we can take
for granted at the horizon of a black hole. In fig,??(a) we depict a shell of
mass M that is collapsing towards its horizon. Suppose we do assume that the
equivalence principle holds for each particle making up the shell, as the shell as
it approaches its horizon. Then the shell will fall smoothly through its horizon.
The light cones in the region between the shell and the horizon would point
in the direction of smaller r, so the shell would have to continue inwards till
we get a singularity at r = 0. The horizon formed in the process would create
entangled pairs, and we would be facing Hawking’s information paradox.

But the equivalence principle need not hold at the horizon if some new
physical phenomenon becomes relevant when the shell reaches near its horizon
radius. We have argued that a large new space of solutions to the full theory
opens up at this point, and the wavefunctional of the collapsing shell spreads
over this newly accessible space. The further evolution of this system should be
therefore studies using a wavefunctional over all of superspace – the space of all
states of the gravity theory with mass ≈M :

|Ψ〉 =
∑
a

Ca|Fa〉 (2.1)

Thus we should not focus just on the wavefunctions ψi(x) of individual particles
in the shell, and try to follow their evolution in a locally smooth spacetime using
the Schrodinger equation. A much larger space of states is involved, and it would
be incorrect to ignore these other states.

Since we are questioning the equivalence principle itself, we should not use
coordinates which assume a smooth horizon to start with. Thus we should not
use the coordinates appropriate to an infalling observer in the classical black hole
metric; i.e., we should not use Eddington-Finkelstein or Kruskal coordinates to
study the horizon.

We will instead start with a description where spacetime is flat, and the
gravitational interaction is taken into account by propagators between the par-
ticles involved in the process. We have seen in section ?? that this flat space +
propagators description can be traded for one where there are no gravity prop-
agators, and the effects of gravity are absorbed into an alteration of the metric.
More precisely, we have seen that such a trade can be made when the gravity
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is weak. What we will now argue is that such a trade is not possible when the
large space of alternative gravity solutions – the fuzzballs – becomes accessible.

We proceed in the following steps:

(A) In fig. ?? we depict flat spacetime. A shell is moving inwards. The
gravitational interactions between the particles of the shell are indicated by
propagators. These propagators are assumed to denote exchanges of all particles
in the theory, not just gravitons. Let the mass of the shell be M ; this can be
measured when the shell was at r =∞, and there were no interactions between
its widely dispersed particles.

(B) As the shell moves to smaller radii, the interactions represented by the
propagators increase. When the shell reaches close to its horizon radius these
propagator exchanges become extremely strong. One way to see this is the
following. Consider the trajectory of a point P on the collapsing shell. Mark off
intervals of proper time ∆t along the worldline followed by P . At these intervals,
imagine that we send back a light signal towards infinity, radially outwards. Let
these signals be picked up at a fixed location near infinity r0 �M . Now we ask:
what is the separation in time ∆t0 between the signals received at r0? (The
time t0 is the usual Minkowski time at infinity.)

We now note that as
r → 2M (2.2)

we get
∆t0 →∞ (2.3)

This fact indicates that the effect of the propagator corrections on the behavior
of the system diverges as r → 2M . This fact does not by itself imply that the
infalling shell will feel anything unusual as r → 2M ; all we are observing right
now is that the number of propagators involved in the flat spacetime description
diverges as r → 2M .

To see that (2.3) is true, we consider infall in the classical metric generated
by the collapsing shell. Outside the shell we have the Schwarzschild metric

ds2 = −(1− 2M

r
)dt2 +

dr2

1− 2M
r

+ r2(dθ2 + sin2 θdφ2) (2.4)

As the shell comes close to its horizon (or indeed, as it falls through it in the
classical picture), we have

dr

dτ
= µ (2.5)

where τ is the proper time the trajectory of the point P and 0 < µ∞ depends
on the infall trajectory. Consider two points along the trajectory of P separated
by an infinitesimal proper time ∆τ . Then between these two points

dr = −µdτ (2.6)
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From the condition

dτ2 = −(1− 2M

r
)dt2 +

dr2

1− 2M
r

(2.7)

we find
dt ≈ 2Mµ

r − 2M
dτ (2.8)

where we have assumed that

r − 2M �M (2.9)

Now we note that for a light ray emitted radially outwards at time t and position
r, the time ∆t at which it reaches taken to reach r = r0 is given by

∆t =

∫ r0

r

dr

1− 2M
r

(2.10)

Thus when the emission points are separated as in (2.6), we get

d(∆t) =
dr

1− 2M
r

≈ 2Mµ

r − 2M
dτ (2.11)

Let t0 be the time at which a signal reaches r = r0. The difference in t0 between
the two signals is obtained by adding (2.8) and (2.11)

dt0 ≈
2Mµ

r − 2M
dτ +

2Mµ

r − 2M
dτ =

4Mµ

r − 2M
dτ (2.12)

We see that dt0 indeed diverges as r → 2M .

(C) As noted above, this divergence does not by itself imply that the infalling
shell has to feel something nontrivial as it reaches the horizon. In fact there are
two possibilities:

(i) We can trade the divergent number of propagators for a curved spacetime
which has a smooth horizon, and the shell falls through this horizon obeying
the equivalence principle.

(ii) We cannot trade these propagators for locally smooth spacetime; the
wavefunctional spreads over new directions in superspace described by fuzzball
configurations.

When gravitational effects are weak, we have seen explicitly how we can
trade the propagators in flat space for a change in the metric. But as r → 2M ,
we have a very large number of propagator exchanges. The gravity theory is
nonlinear, so these propagators interact among themselves. This interaction can
generate new states of the gravity theory. Note that all states of the full theory –
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in particular the fuzzball states — are just complicated wavefunctionals made of
the same fields that appear in the propagators. Thus we can have the situation
depicted in fig.??: the large number of propagators in the region r → 2M
interact among themselves to generate fuzzball states. The full wavefunctional
then moves into nontrivial directions in superspace.

Note that if we had a theory which did not have the fuzzball states |Fi〉, then
the propagators could be summed to yield the traditional black hole metric with
the local vacuum state at the horizon.

(D) Let us now consider the issue of energy balance. The fuzzball configu-
ration is not the vacuum state, and so carries energy. Let us make a schematic
picture of the energy distribution. We assume that at the first stage of infall,
the fuzzball states form a shell of mass M1 at a radius

r = 2M + ε (2.13)

The remaining energyM −M1 is still carried by the initial infalling shell, which
is now inside the fuzzball shell (fig.??). But inside the fuzzball shell of mass
M1, the time dilation gives an effect reduction in energy of the matter shell:

M → (gtt)
1
2M = (1− 2M1

2M + ε
)

1
2M ≡M ′1 (2.14)

Energy balance tells us that

M ′1 = M −M1 (2.15)

and we have a configuration that still has no horizon anywhere.
The matter shell moves further inwards, and at a radius

r2 = 2M ′1 (2.16)

it would tend to make a horizon. As the matter shell approaches r = 2M ′1
however, we again have a nucleation of fuzzball states, leading to a fuzzball
shell of some mass M2 at a location r = 2M ′1 + ε2. The matter shell is now
inside this location, and has an energy

(1− 2M2

r2 + ε2
)

1
2M ′1 (2.17)

This process repeats, until all of the initial energy of the shell is transferred to
the fuzzball configuration.

(D) Finally, we look at the fuzzball configuration that we have generated,
The redshift can be small at various points, but no horizon has formed, and we
get a spacetime of the form in fig.??.
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