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Appendix A

General Relativity: Notations and useful tools

In this appendix we collect together some basic relations in general relativity.

A.1 Notation

The metric is a symmetric tensor gµν , transforming under a coordinate change
as

g′µ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
gµν (A.1)

In a local orthonormal frame the metric take the form {−1, 1, 1, . . . 1}. The
inverse metric gµν is defined through

gµλgλν = δµν (A.2)

where δµν = 1 if µ = ν and 0 otherwise. The determinant of gµν is called g.
Volumes are defined using the Levi-Civita symbol, which in a local orthonormal
frame has the value

ε012...(D−1) = 1 (A.3)

For any permutation of these indices, the value is given by the sign of the
permutation. If the indices are not all different, the symbol is 0. In a general
coordinate system xµ, we get

ε012...(D−1) =
√
−g (A.4)

with the value for other index choices given by the same rules as above.
The connection is defined as

γµνλ =
1

2
gλκ (gκν,λ + gκλ,ν − gνλ,κ) (A.5)

The Riemann curvature tensor is

Rµνλκ = Γµνκ,λ − Γµνλ,κ + ΓµλθΓ
θ
νκ − ΓµκθΓ

θ
νλ (A.6)

The Ricci tensor is
Rµν = Rθµθν (A.7)

The Ricci scalar is
R = gµνRµν = Rµµ (A.8)
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The Einstein action is

SE =
1

16πG

∫
dDx
√
−gR (A.9)

Here dDx
√
−g gives the proper volume associated to the coordinate volume

dDx. The variation of
√
−g is given by

δ
√
−g =

1

2

√
−ggµνδgµν = −1

2

√
−ggµνδgµν (A.10)

The total action is given by adding the gravity action and the matter action

S =
1

16πG

∫
dDx
√
−gR+ Smatter (A.11)

The stress tensor, also called the energy-momentum tensor, is defined by

Tµν = − 2√
−g

δSmatter
δgµν

(A.12)

Requiring that the action (A.11) be stationary under variations of gµν

δS

δgµν
= 0 (A.13)

gives the Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν (A.14)

A.2 Dimensional reduction

Suppose we start with the Einstein action, and compactify some of the space
directions. Let us examine the form of the action that results upon this dimen-
sional reduction.

Let the total spacetime have dimension D, and let the indices A,B . . . run
over 0, 1, . . . D−1. Let p of the directions be compactified on circles; the coordi-
nates in these directions are yi, i = 1, . . . p. Let the coordinates in the remaining
D− p dimensions be xa, a = 0, 1, . . . D− p− 1. We assume that the metric gAB
is independent of the yi, and further assume for the moment that

gai = 0 (A.15)

We look for solutions where the metric of the compact directions has the form

gij = eC(x)δij (A.16)

Then we get

Γija =
1

2
δijC,a, Γaij = −1

2
eCgabC,bδij (A.17)
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To study the Einstein action, we need to compute the curvature tensor in
D dimensions and express it in terms of the curvature tensor in the D − p
dimensional space spanned by the xa. Let us work around a point x in these
D− p directions. We can choose a system of coordinates around this point x so
that at this poiny

gab = ηab, gab,c = 0 (A.18)

We now express different components of the D dimensional Riemann tensor in
terms of quantities in the D− p dimensional spacetime spanned by the xa. We
find

[Rcadb]D = [Rcadb]D−p (A.19)

Here the components [Rcadb]D are computed using the metric gAB in the entire
D dimensional spacetime while [Rcadb]D−p is computed by assuming that we
are in a D − p dimensional spacetime with the metric gab. We also get

[Riajb]D = Γiab,j − Γiaj,b + ΓiAjΓ
A
ab − ΓiAbΓ

A
aj

= −Γiaj,b + ΓicjΓ
c
ab − ΓikbΓ

k
aj

= −Γiaj,b − ΓikbΓ
k
aj

= −1

2
δijC;ab −

1

4
δijC,aC,b

(A.20)

Here we have converted ordinary partial derivatives of C to covariant derivatives:
we have vanishing connection on the D − p dimensional spacetime due to the
coordinate choice (A.37) , and when we go to general coordinates on this space
the term Cab becomes C;ab. Similarly we get

[Raibj ]D = −eC [
1

2
δijC

;a
b +

1

4
δijC

;aC,b] (A.21)

[Rikjl]D = ΓiAjΓ
A
kl − ΓiAlΓ

A
kj

= ΓicjΓ
c
kl − ΓiclΓ

c
kj

= −1

4
eCC,cC

;c[δijδkl − δilδkj ]

(A.22)

Thus

[Rab]D = [Rcacb]D + [Riaib]D = [Rab]D−p −
p

2
C;ab −

p

4
C,aC,b (A.23)

[Rij ]D = [Rkikj ]D + [Rcicj ]D = −δij
(p− 1)

4
eCC,cC

;c − eC [
1

2
δijC

;c
c +

1

4
δijC

;cC,c]

= −δij [
p

4
eCC,cC

;c +
1

2
eCC ;c

c]

(A.24)
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[R]D = [R]D−p −
p

2
C;c

c − p

4
C,cC

;c − p2

4
C,cC

;c − p

2
C ;c

c = [R]D−p − pC;c
c − p(p+ 1)

4
C,cC

;c(A.25)

Now consider the Einstein action of the D dimensional gravity theory

SD =
1

16πG

∫
dDξ
√
−gD[R]D (A.26)

From (A.16) we see that
√
−gD =

√
−gD−pe

p
2C (A.27)

We then get

SD =
V

16πG

∫
dD−px

√
−gD−pe

p
2C([R]D−p − pC;c

c − p(p+ 1)

4
C,cC

;c) (A.28)

where
V =

∫
dy1 . . . dyp (A.29)

is the ‘coordinate volume’ of the compact directions. V is a constant; the
variation in the scale of the compact directions is given through the function
C(x). The middle term in the bracket in (A.28) can be integrated by parts, and
we get

SD =
V

16πG

∫
dD−px

√
−gD−pe

p
2C([R]D−p +

p(p− 1)

4
C,cC

;c) (A.30)

Let us note in particular the expression for p = 1; i.e., the case where we
compactify one direction. Then (A.30) gives

SD =
V

16πG

∫
dD−1x

√
−gD−1e

1
2C [R]D−1 (A.31)

While the term C,cC
;c is absent, we still have a very nonlinear coupling between

the metric and C, due to the factor e
1
2C multiplying the curvature scalar. We

will now see how redefining the metric will remove such a coupling.

A.3 Scaling the metric

The part
∫
dD−px

√−gD−pe
p
2C [R]D−p in (A.30) would look like the action for

gravity in D−p dimensions, if the factor e
p
2C were absent. Our goal is to get rid

of this factor by absorbing it in the metric gab. But this needs some care since
[R]D−p contains not only gab but also derivatives of gab. Let us now perform
the relevant steps.

Suppose we have a D dimensional spacetime x0, x1, . . . xD−1 with a metric
gab. Suppose we also have a scalar function µ(x) on this spacetime. We can
then define another ‘metric tensor’ qab

qab = eµgab (A.32)
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Quantities computed using the metric q will be labeled with the subscript q,
and quantities computed using the metric g will be labeled with a subscript g.

Using the new metric q we find

[Γabc]q = [Γabc]g +
1

2
[δabµ,c + δacµ,b − qbcµ,a] (A.33)

where in the last term the metric is raised by qab.
Working around a point x, choose local coordinates such that

qab(x) = ηab, qab,c(x) = 0 (A.34)

We then have

[Rcadb]q = [Γcab,d − Γcad,b]q (A.35)

[Rcadb]g = [Γcab,d − Γcad,b]g + [ΓcfdΓ
f
ab − ΓcfbΓ

f
ad]g

= [Γcab,d − Γcad,b]q −
1

2
[δcaµ,b + δcbµ,a − qabµ,c],d

+
1

2
[δcaµ,d + δcdµ,a − qadµ,c],b

+
1

4
[δcfµ,d + δcdµ,f − qfdµ,c][δfaµ,b + δfb µ,a − qabµ

,f ]

− 1

4
[δcfµ,b + δcbµ,f − qfbµ,c][δfaµ,d + δfdµ,a − qadµ

,f ]

(A.36)

(Indices in the second, third, fourth lines are raised by qab.)
We now assume that we are in a coordinate system where

qab = ηab, qab,c = 0 (A.37)

We then find that

[Rcadb]g = [Rcadb]q −
1

2
[δcbµ,ad − qabµ,cd] +

1

2
[δcdµ,ab − qadµ,cb]

− 1

4
[δcdqab − δcbqad]µ,fµ,f +

1

4
[δcdµ,aµ,b − δcbµ,aµ,d]

− 1

4
[qadµ

,cµ,b − qabµ,cµ,d]

(A.38)

This yields

[Rab]g = [Rab]q +
1

2
(D− 2)µ;ab +

1

2
qabµ;c

c− 1

4
(D− 2)qabµ,cµ

,c +
1

4
(D− 2)µ,aµ,b

(A.39)

[R]g = eµ[R]q + eµ[(D − 1)µ;c
c − 1

4
(D − 1)(D − 2)µ,cµ

,c] (A.40)
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where in the RHS of (A.39), (A.40) index raising operations and covariant
derivatives are all computed using the metric q.

Let us now see how we can use the relations derived above to obtain (??):
the dimensional reduction of the Einstein action from (D+ 1) dimensions to D
dimensions, where we wish to end up with the Einstein action in D dimensions
plus a scalar.

The Einstein action in D + 1 dimensions is

S =
1

16πG

∫
dD+1x

√
−gD+1RD+1 (A.41)

We wish to compactify the direction xD+1 on a circle of coordinate length B:

0 ≤ xD+1 < B (A.42)

We write
gD+1,D+1 = eC (A.43)

Using (A.31), we find

SD+1 =
B

16πG

∫
dDx
√
−gDe

1
2C [R]D (A.44)

We now wish to absorb the factor e
1
2C into the curvature term, through a

definition
gEab = eµCgab (A.45)

To see what value of µ we should take, we count the powers of the metric in
(A.55):

(i) The determinant of the metric gD has D powers of the metric gab. Thus
the factor

√
−gD has D

2 powers of the metric.

(ii) The connection Γabc has no net powers of the metric: in the expression
(A.5) there is one power of the inverse metric gλκ and one power of the metric
througfh the terms like gκν,λ. The Riemann tensor (A.6) then has no net powers
of the metric either. The Ricci tensor (A.7) is obtained by contracting an up
and a down index in the Riemann tensor, and so still has no net powers of theg
metric. Finally, The Ricci scalar (A.8) has one power of the inverse metric more
than the Ricci tensor; thus it has −1 powers of the metric gab

(iii) Thus we have a total of

D

2
− 1 =

D − 2

2
(A.46)

powers of the metric gab in the action (A.55). we need to absorb a factor e
1
2C .

Thus we write
(gEab)

D−2
2 = e

1
2C(gab)

D−2
2 (A.47)
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which gives
gEab = eµgab (A.48)

with
µ =

C

D − 2
(A.49)

We can now use the relation (A.40), where qab = gEab, and µ is given by
(A.49). We find

[R]D = e
2

D−2C

(
[RE ]D + (D − 1)µ;c

c − 1

4
(D − 1)(D − 2)µ,cµ

,c

)
(A.50)

Thus the action (??) is

SD+1 =
B

16πG

∫
dDx
√
−gDe

1
2C [R]D

=
B

16πG

∫
dDx

√
−gED

(
[RE ]D + (D − 1)µ;c

c − 1

4
(D − 1)(D − 2)µ,cµ

,c

)
=

B

16πG

∫
dDx

√
−gED

(
[RE ]D −

1

4
(D − 1)(D − 2)µ,cµ

,c

)
=

B

16πG

∫
dDx

√
−gED

(
[RE ]D −

(D − 1)

4(D − 2)
C,cC

,c

)
(A.51)

Here in the second step we observe the cancellation of powers of eC (which was
arranged to happen by the choice (A.49)) and in the third step we have noted
that µ;c

c is a total divergence and can hence be dropped from the action.
We now see that the action SD+1 has the symmetry (??)

C → −C
gEµν → gEµν (A.52)

A.4 Two compact directions

We obtained the symmetry (A.52) by compactifying one directions and obtain-
ing the scalar C. We will now compactify an additional direction, so that we
will have two scalars C, C̃. We will then look for a symmetry that generalizes
the map C → −C to a more general linear map mixing C, C̃. We proceed in
the following steps:

(i) We again start with the D+1 dimensional action

SD+1 =

∫
dD+1x

√
−gR (A.53)
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We compactify the direction xD+1 as in (A.42), and write

gD+1,D+1 = eC (A.54)

At this stage we get the action (A.55)

SD+1 =
B

16πG

∫
dDx
√
−gDe

1
2C [R]D (A.55)

(ii) We wish to define a rescaled metric for the D dimensional theory. In its
appropriate setting in string theory, this metric will be called the ‘string metric’,
so we denote it gSab. We write

gS = eαCg (A.56)

In the relation (A.32), we see that qab = gSab, and

µ = αC (A.57)

We see that
√
−gD = e−

D
2 αC

√
−gSD (A.58)

Using (A.40), we find

SD+1 =

∫
dDx
√
−gNe−

D
2 αCe

C
2 eαC

(
RSD + (D − 1)α∂2C − (D − 1)(D − 2)

4
α2∂C∂C

)
(A.59)

The term with ∂2C can be integrated by parts to give

SD+1 =

∫
dDx

√
−gSDe

[− (D−2)
2 α+ 1

2 ]C

(
RSD − (

(D − 1)

2
α− (D − 1)(D − 2)

4
α2)∂C∂C

)
(A.60)

(iii) We now wish to compactify an additional direction xD−1

0 ≤ xD−1 < A (A.61)

We set
gS(D−1)(D−1) = eC̃ (A.62)

and assume as before that

gS(D−1),a = 0, a = 0, 1, . . . (D − 2) (A.63)

Now we have a D − 1 dimensional spacetime, carrying a metric gSab with a, b =

0, 1, . . . (D − 2), and two scalars C, C̃.√
−gSD = e

C̃
2

√
−gS(D−1) (A.64)
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Using (A.31) to write RSD to RSD−1, we find that the action reduced to (D − 1)
dimensions is

SD+1 =

∫
dDx

√
−gSDe

[− (D−2)
2 α+ 1

2 ]C(RSD

−
[

(D − 1)

2
α− (D − 1)(D − 2)

4
α2

]
∂C∂C)

=

∫
d(D−1)x

√
−gS(D−1)e

C̃
2 e[−

(D−2)
2 α+ 1

2 ]C(RS(D−1) − ∂
2C̃ − 1

2
∂C̃∂C̃

−(
(D − 1)

2
α− (D − 1)(D − 2)

4
α2)∂C∂C)

(A.65)

We integrate by parts the term containing ∂2C̃, to find

SD+1 =

∫
d(D−1)x

√
−gS(D−1)e

C̃
2 e[−

(D−2)
2 α+ 1

2 ]C [RS(D−1)

+ [− (D − 2)

2
α+

1

2
]∂C∂C̃ − [

(D − 1)

2
α− (D − 1)(D − 2)

4
α2]∂C∂C]

(A.66)

(iv) We now look for a symmetry of the form

C̃ ′ = (aC̃ + bC)

C ′ = (cC̃ + dC)

g′N,(D−1) = gN,(D−1) (A.67)

and ask that
S′D+1 = SD+1 (A.68)

We have 5 free parameters: α, a, b, c, d. Requiring that the exponential prefactor
in (A.66) remain unchanged under the map (A.67) gives

1

2
(aC̃ + bC) + [− (D − 2)

2
α+

1

2
](cC̃ + dC) =

1

2
C̃ + [− (D − 2)

2
α+

1

2
]C (A.69)

which yields two constraints

1

2
a+ [− (D − 2)

2
α+

1

2
]c =

1

2
(A.70)

1

2
b+ [− (D − 2)

2
α+

1

2
]d = [− (D − 2)

2
α+

1

2
] (A.71)

The curvature scalar RSD−1 remains unchanged under the map (A.67). Requir-
ing that the coefficients of the kinetic terms ∂C∂C, ∂C∂C̃ and ∂C̃∂C̃ remain
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unchanged gives the three relations:(
− (D − 2)

2
α+

1

2

)
bd −

(
(D − 1)

2
α− (D − 1)(D − 2)

4
α2

)
d2

= −
(

(D − 1)

2
α− (D − 1)(D − 2)

4
α2

)
(A.72)

(
− (D − 2)

2
α+

1

2

)
(ad+ bc) −

(
(D − 1)

2
α− (D − 1)(D − 2)

4
α2

)
(2cd)

=

(
− (D − 2)

2
α+

1

2

)
(A.73)

(
− (D − 2)

2
α+

1

2

)
ac−

(
(D − 1)

2
α− (D − 1)(D − 2)

4
α2

)
c2 = 0 (A.74)

(v) We thus have 5 relations (A.70)-(A.74) for the 5 parameters α, a, b, c, d.
These relations must of course admit the trivial solution where nothing is
changed

α = 0, a = 1, b = 0, c = 0 d = 1 (A.75)

What is interesting is that are also nontrivial solutions

α =
1±
√
D − 1

D − 2
, a = −1, b = 0, c = ∓ 2√

D − 1
, d = 1 (A.76)

This is the T-duality symmetry noted in section ??.

A.4.1 The IIA and IIB string actions
We choose the positive sign in (A.76); the other choice gives a combination of
T-duality and other symmetries. We set D = 10. This gives

α =
1

2
(A.77)

Recalling the definition of the dilaton

C =
4

3
φ (A.78)

we find that the string metric gSab is related to 11-d metric gab through

gSab = e
C
2 gab (A.79)

The 10-d action in terms of the metric gab is given by eq.(A.55))

S =
B

16πG

∫
d10x
√
−ge 1

2C [R]10 (A.80)
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We use the substitution (A.79), in (??), so that

µ =
1

2
C (A.81)

This gives

[R]10 = e
C
2

(
[R]S +

9

2
C;c

c − 9

2
C,cC

,c

)
(A.82)

Thus

S =
B

16πG

∫
d10x

√
−gSe− 5

2Ce
1
2Ce

1
2

(
[R]S +

9

2
C;c

c − 9

2
C,cC

,c

)
=

B

16πG

∫
d10x

√
−gSe− 3

2C

(
[R]S +

9

2
C;c

c − 9

2
C,cC

,c

)
=

B

16πG

∫
d10x

√
−gSe− 3

2C

(
[R]S +

9

4
C,cC

,c

)
=

B

16πG

∫
d10x

√
−gSe−2φ ([R]S + 4φ,cφ

,c)

(A.83)

This is the action of IIA string theory, which is obtained from the 11-d M
theory by compactification of x10. But we can see that as far as the metric gSab
and dilaton φ are concerned, this is also the action for the IIB theory. This is
seen as follows:

(i) Compactify one further direction x9, obtaining the action (A.66) (with
D = 10 and α = 1/2). This is still the IIA theory.

(ii) Perform a T-duality in the direction x9. This brings us to the IIB theory.
But the action (A.66) remains invariant under this duality, the duality map (??)
was constructed to get this invariance.

(iii) We can now regard the action (A.66) again as an action for a 10-d
theory, getting (A.83). Thus (??) is also the action fo 10-d IIB theory.

Let us convert the ‘string frame’ action (A.83) to the Einstein frame. We
have

e−2φ
(
gSab
)4

=
(
gEab
)4

(A.84)

so that
gEab = e−

φ
2 gSab (A.85)

Thus we have a scaling with µ = − 1
2φ. We get

[R]S = e−
1
2φ

(
[R]E −

9

2
φ;c

c − 9

2
φ,cφ

,c

)
(A.86)
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This gives

S =
B

16πG

∫
d10x

√
−gSe−2φ ([R]S + 4φ,cφ

,c)

=
B

16πG

∫
d10x

√
−gEe 5

2φe−2φe−
1
2φ

(
[R]E −

9

2
φ;c

c − 9

2
φ,cφ

,c + 4φ,cφ
,c

)
=

B

16πG

∫
d10x

√
−gE

(
[R]E −

1

2
φ,cφ

,c

)
(A.87)

A.5 The Casimir effect

Consider a free, massless scalar field φ in 1+1 dimensional spacetime x, t. Let
x be compactified to a circle

0 ≤ x < L (A.88)

We have seen that the scalar field φ can be decompsed into a set of independent
harmonic oscillators, with frequencies

ωn =
2π|n|
L

, −∞ < n <∞ (A.89)

Each harmonic oscillator has a ground state energy 1
2ωn, so that the ground

state energy of the entire system is

E0 =
1

2

∞∑
n=−∞

ωn (A.90)

This sum clearly diverges. To deal with this issue, we assume that some physical
effect cuts off the sum at very high energies. Setting this cutoff scale as Ec, we
assume that the sum (A.90) should be replaced by a regularized sum

ER0 =
1

2

∞∑
−∞

ωnf(ωn) (A.91)

Here the function f(E) has the properties

f(E) → 1, E � Ec

f(E) → 0, E � Ec (A.92)

We also assume that f is smooth; i.e., it drops very gently from its value 1 at
E � Ec to its value 0 at E � Ec. We will take the limit Ec → ∞ at the end,
and so this smoothness can be stated as∣∣∣∣dnf(E)

dEn

∣∣∣∣� Cn
Enc

, E � Ec∣∣∣∣dnf(E)

dEn

∣∣∣∣� Dn

En
, E � Ec (A.93)
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for constants Ck, Dk of order unity. An example for the function f satisfying
these conditions is

f(E) = e−
E
Ec (A.94)

We find that

ER0 =
1

2

∞∑
−∞

2π|n|
L

f(ωn) =
2π

L

∞∑
n=1

nf(
2πn

L
) (A.95)

The energy (A.91) will still diverge when we take the limit Ec → ∞. But
we can require that there be a basic negative energy shift to the Hamiltonian,
which will cancel the divergent part of this energy. In the limit where the com-
pactification circle has an infinite length, we are in 1+1 dimensional Minkowski
space, and we assume that the negative energy shift is such that the energy of
the vacuum in this case is zero. To reach this case, assume that the spatial
circle x is compactified to a very large length; we will call this length L∞ since
we will take L∞ at the end. Let ER,∞0 be the analogue of (A.91) on this circle
of length L

ER,∞0 =
2π

L∞

∞∑
n=1

nf(
2πn

L∞
) (A.96)

Then the ground state energy per unit length will be ER∞/L∞, and this is the
value we must subtract per unit length of our system. Thus the net ground
state energy for our compactification (A.88) will be

∆E0 = ER0 −
L

L∞
ER,∞0 (A.97)

This is the quantity that we will compute now, keeping in mind that we must
set Ec →∞ and L∞ →∞ in the defuinition of ∆E0.

A.5.1 Writing ER,∞
R as an integral

For the compactification (A.88), the separation between energy levels is 2π/L.
For the compactification length L∞, the separation 2π/L∞ goes to zero in the
limit L∞ →∞, so we can replace the sum over n by an integral. The net energy
(A.97) will then arise as the difference between a sum and an integral.

We write
f(

2πn

L
) = f̃(n) (A.98)

so that (A.95) becomes

ER0 =
2π

L

∞∑
n=1

nf̃(n) (A.99)

In (A.96) we have the regularization function

f(
2πn

L∞
) = f(

2πn

L

L

L∞
) ≡ f̃(

L

L∞
n) (A.100)
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We write
L

L∞
n ≡ x (A.101)

The sum in (A.96) goes over to an integral∑
n

→
∫
dn =

L∞
L
dx (A.102)

We get

ER,∞0 =

(
2π

L∞

)(
L∞
L

)2 ∫ ∞
x=0

dxxf̃(x) =
2πL∞
L2

∫ ∞
x=0

dxxf̃(x) (A.103)

Thus

∆E0 = ER0 −
L

L∞
ER,∞0 =

2π

L

( ∞∑
n=1

nf̃(n)−
∫ ∞
x=0

dxxf̃(x)

)
≡ 2π

L
(S − I)

(A.104)
where we have called the sum S and the integral I.

A.5.2 Computing S − I

The quantity S − I is depicted pictorially in fig.??. We plot the function xf̃(x)
vs x. Since f̃(x)→ 1 for small x, the function xf̃(x) rises linearly in this region.
But at x� 1, the function xf̃(x) damps smoothly to zero because f̃(x)→ 0.

Consider the region
n ≤ x < n+ 1 (A.105)

The sum S has a term Sn = nf̃(n), which we can represent by the area of a
rectangle of height nf̃(n) over this region. The integral I on the other hand has
a contribution In given by the area under the curve xf̃(x) in this region. Thus
the contribution to Sn − In from this region is given by the area of the shaded
area which lies between the curve and the rectangle.

From fig.?? we see that Sn−In is negative for small n, and it may seem that
the sum over n is diverging to negative infinity. But Sn− In is positive at large
n where the function xf̃(x) is decreasing. Remarkably, the sum over n leads to
a definite finite value for

∑
n(Sn− In), with this value being independent of the

precise choice of function f̃ . This independence of regularization is of course
an aspect of the renormalizability of the theory, which allows the existence of
well-defined low energy physics after a subtraction of infinities arising from high
energy cutoffs.

To compute In, we expand the function xf̃(x) around x = n:

In =

∫ n+1

n

xf̃(x)dx

=

∫ 1

0

dy

(
[nf̃(n)] + [nf̃ ′(n) + f̃(n)]y + [2f̃ ′(n) + nf̃ ′′(n)]

y2

2
] + . . .

)
= [nf(n)] +

1

2
[ñ̃f ′(n) + f̃(n)] +

1

6
[2f̃ ′(n) + nf̃ ′′(n)] + . . . (A.106)
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Thus

S − I = −
∞∑
n=0

(
1

2
[nf̃ ′(n) + f̃(n)]− 1

6
[2f̃ ′(n) + nf̃ ′′(n)]

)
(A.107)

We write

S̃ =

∞∑
n=0

[nf̃ ′(n) + f̃(n)] (A.108)

In general a sum is hard to compute, but an integral can be easier. Thus let us
define

Ĩ =

∫ ∞
0

dx[xf̃ ′(x) + f̃(x)] (A.109)

This integral happens to vanish

Ĩ =

∫ ∞
0

dx[xf̃(x)]′ = [xf̃(x)]∞0 = 0 (A.110)

where we have used the vanishing of f̃ at x→∞.
We have

S̃ = Ĩ + (S̃ − Ĩ) = (S̃ − Ĩ) (A.111)

where the quantity (S̃− Ĩ) is again the difference between a sum and an integral.
Let us compute this difference in the same way as above, expanding the function
[xf̃ ′(x) + f̃(x)] in a series about x = n, With y = x− n:

[xf̃ ′(x) + f̃(x)] = [nf̃ ′(n) + f̃(n)] + [2f̃ ′(n) + nf̃ ′′(n)]y + . . . (A.112)

We have

(S̃ − Ĩ) =

∞∑
n=0

([nf̃ ′(n) + f̃(n)]

−
∫ 1

y=0

dy
(

[nf̃ ′(n) + f̃(n)] + [2f̃ ′(n) + nf ′′(n)]y + . . .
)

)

= −
∞∑
n=0

1

2
[2f̃ ′(n) + nf̃ ′′(n)] (A.113)

Using this expression in (A.111), and then substituting for S̃ in (A.107), we get

S − I =

∞∑
n=0

(
1

4
[2f̃ ′(n) + nf̃ ′′(n)] +

1

6
[2f̃ ′(n) + nf̃ ′′(n)]

)

=

∞∑
n=0

(
1

6
f̃ ′(n) +

1

12
nf̃ ′′(n)

)
(A.114)
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If we approximate this sum as an integral, we get

S − I →
∫ ∞
0

dx[
1

6
f̃ ′(x) +

1

12
xf̃ ′′(x)]

=
1

6
f̃ |∞0 +

1

12
[xf̃ ′]∞0 −

∫ ∞
0

dxf̃ ′(x)

= −1

6
+

1

12

= − 1

12
(A.115)

where we have used that f̃(0) = 1, f̃ ′(0) = 0.
One may think that we again have to worry about the difference between

the sum (A.114) and the integral (A.115), but this is not the case; this time the
difference can be ignored. Consider the difference ∆n in the segment n ≤ x <
n+ 1:

∆n = [
1

6
f̃ ′(n) +

1

12
nf̃ ′′(n)]

−
∫ 1

y=0

dy([
1

6
f̃ ′(n) +

1

12
nf̃ ′′(n)] + [

1

4
f̃ ′′(n) +

1

12
f̃ ′′′(n)]y + . . .)

=
1

2
[
1

4
f̃ ′′(n) +

1

12
nf̃ ′′′(n)] + . . . (A.116)

From (A.93) and the definition (A.104) of x, we find

df̃(x)

dx
=

d

dx
f(

2π

l
x) =

2π

L
f ′(

2π

L
x)

<
2π

L

1

Ec
, x &

LEc
2π

<
1

x
x .

LEc
2π

(A.117)

where f ′ denotes the derivative of f with respect to its argument. Similarly, we
find

d2f̃(x)

dx2
<

(
2π

LEc

)2

, x &
LEc
2π

<
1

x2
x .

LEc
2π

(A.118)

d3f̃(x)

dx3
<

(
2π

LEc

)3

, x &
LEc
2π

<
1

x3
x .

LEc
2π

(A.119)

and so on. We then find that in the limit Ec →∞, the sum
∑
n ∆n goes to zero.

The reason for this vanishing can be traced to the fact that the cutoff function
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f is very smooth (varying on the scale Ec), so once if we have an expression
with sufficiently many derivatives of f , then it vanishes when the energy cutoff
scale is taken to infinity.

A.5.3 Collecting the results
Our goal was to compute the ground state energy ∆E0 for a scalar field on a
circle of length L, where the Hamiltonian was defined in such a way that the
ground state energy in the limit L → ∞ was zero. From (A.104) and (A.115)
we find

∆E0 =
2π

L
(S − I)

= −
(

2π

L

)(
1

12

)
(A.120)

To summarize, the ground state energy for a scalar field involves a sum
(A.90) which, apart from overall factors, involves the divergent sum

B = 1 + 2 + . . . (A.121)

After regularizing this sum as in (A.91), and renormalizing it by a subtraction
as in (A.97), we get

B = 1 + 2 + . . .→ − 1

12
(A.122)

Once we know that there is a well defined renormalized value for B, we can
obtain it by simpler mathematical methods. The zeta function is defined as

ζ(s) =

∞∑
n=1

n−s (A.123)

so that
B = ζ(−1) = − 1

12
(A.124)

where an analytical continuation is required from values s > 1.

A.5.4 Ground state energy for fermions
Let us now consider the ground state energy ∆E0 for the case where the we a
fermionic field ψ instead of the bosonic field φ on or circle of length L.

The fermion field can also be decomposed into harmonic oscillators, and we
get a similar contribution to the ∆E0 from the ground state energy of each
oscillator.

For a usual harmonic oscillator defined in terms of a ‘bosonic’ variable x, we
have the Hamiltonian

Hboson =
1

2
(p̂2 + x̂2) =

1

2
(ââ† + â†â)ω = (â†â+

1

2
)ω (A.125)
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where we have used the commutator [â, â†] = 1. This gives the ground state
energy

Ebosonic0 =
1

2
ω (A.126)

which we used in the derivation of (A.120).
We can also define an oscillator for a fermionic variable, which gives

Hfermion =
1

2
(b̂b̂† + b̂†b̂)ω = (b̂†b̂− 1

2
)ω (A.127)

where we have used the anti-commutator [b̂, b̂†] = −1. This gives a ground state
energy

Efermionic0 = −1

2
ω (A.128)

For the computation of ∆E0 for the field ψ, we now have two cases:

(i) Ramond boundary condition: The field ψ is periodic around the
circle

ψ(x+ L) = ψ(x) (A.129)

We get the same mode frequencies as in the bosonic case

ωn =
2π|n|
L

, −∞ < n <∞ (A.130)

The computation of ∆E0 is then the same as the bosonic case, but due to the
negative sign in (A.128) we get in place of (A.120)

∆E0 = −
(

2π

L

)
(1 + 2 + . . . ) =

(
2π

L

)(
1

12

)
(A.131)

(ii) Neveu-Schwarz boundary condition: The field ψ is anti-periodic
around the circle

ψ(x+ L) = −ψ(x) (A.132)

We get the mode frequencies

ωn =
2π|n+ 1

2 ||
L

, −∞ < n <∞ (A.133)

Factoring out 2π
L as before, we find that in place of the sum 1 + 2 + . . . we get

the sum
F =

1

2
+

3

2
+ . . . (A.134)

We can compute F by regularizing and renormalizing as before, but we can
obtain it more quickly by relating it to B. We assume that the sum has been
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regularized, though we do not write the cutoff function f in what follows. We
find

2F = 1 + 3 + 5 + . . .

2B = 2 + 4 + 6 + . . . (A.135)

Thus
2F + 2B = 1 + 2 + 3 + · · · = B (A.136)

which gives

F = −1

2
B =

1

24
(A.137)

Noting the negative sign in (A.128) fir the ground state energy of an oscil-
lator, we find that for an antiperiodic fermion ψ

∆E0 = −
(

2π

L

)(
1

2
+

3

2
+ . . .

)
= −

(
2π

L

)(
1

24

)
(A.138)



Appendix B

The idea of particle creation in curved space

B.1 The Schwarzschild hole

Let us start with the Schwarzschild metric of the 3+1 dimensional black hole

ds2 = −(1− 2GM

c2r
)dt2 +

dr2

1− 2GM
c2r

+ r2(dθ2 + sin2 θdφ2) (B.1)

We will set

G = c = ~ = 1 (B.2)

and write dΩ2
2 = dθ2 + sin2 θdφ2 for the metric on the unit 2-sphere S2. Then

(B.1) becomes

ds2 = −(1− 2M

r
)dt2 +

dr2

1− 2M
r

+ r2dΩ2
2 (B.3)

Consider the line

r = r0, θ = θ0, φ = φ0 (B.4)

so that only t changes along this line
(i) For r > 2M the metric along this line gives

ds2 = −(1− 2M

r
)dt2 < 0 (B.5)

so this is a timelike line, and can be the worldline of an actual particle.
(ii) For r < 2M we get

ds2 = −(1− 2M

r
)dt2 > 0 (B.6)

so this is a spacelike line, and cannot be the path of a particle. In other words,
a particle cannot sit at constant r, θ, φ for r < 2M .

The surface r = 2M is called the horizon. Classically (i.e. without quantum
effects) no particle can emerge from inside the horizon to the outside.

21
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B.2 Kruskal coordinates

In the metric (B.3) we see that there is a problem when 1− 2M
r = 0, since the

coefficient of dt2 vanishes and the coefficient of dr2 diverges. Before we know
any more, we cannot be sure if this means that the coordinates are bad at this
location r = 2M or if the metric has a geometrical singularity of some kind. It
will turn out that the singularity at the horizon is only a coordinate singularity.
To show this, we need to use coordinates that are well behaved at the horizon.
Let us find such coordinates.

(i) First we look at the t, r part of the metric and write

ds2 = −(1− 2M

r
)dt2 +

dr2

1− 2M
r

= (1− 2M

r
)[−dt2 +

dr2

(1− 2M
r )2

] (B.7)

We would now like to find a coordinate r∗ such that

dr∗2 =
dr2

(1− 2M
r )2

(B.8)

This gives the equation dr∗ = dr
1− 2M

r

which has the solution

r∗ =

∫ r dr

1− 2M
r

=

∫ r r

r − 2M
=

∫ r

dr[1 +
1

r
2M − 1

] = r + 2M ln(
r

2M
− 1)

(B.9)
where we have set the arbitrary additive constant to zero. The metric (B.3)
becomes

ds2 = (1− 2M

r
)[−dt2 + dr∗2] + r2dΩ2

2 (B.10)

(ii) Now we move to null coordinates by writing

u = t+ r∗, v = t− r∗ (B.11)

This gives

ds2 = (1− 2M

r
)[−dudv] + r2dΩ2

2 (B.12)

(iii) Let us now look at the ranges of these coordinates. Note that the range
r = (2M,∞) maps to r∗ = (−∞,∞). Now consider a null geodesic falling
radially into the hole. Thus θ, φ are constant, and the worldline will be given
by solving ds2 = 0 in the (t, r∗) space. At infinity where the metric is flat the
ingoing geodesic is t+ r = const.. From (B.12) we see that taking into account
the metric of the hole changes this to

t+ r∗ = u = u0 (B.13)

By taking geodesics starting from a given r∗ with different values of t we see
that we can cover the full range −∞ < u0 <∞ for points outside the horizon.
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Similarly, v = t− r∗ can cover this full range. But note in addition that as the
ingoing null geodesic approaches the horizon we get

v = t− r∗ = u0 − 2r∗ →∞ (B.14)

In short, the ‘future horizon’ (i.e. the horizon which is crossed in the future by
an observer who decides to fall into the black hole) is given by

−∞ < u <∞, v =∞ (B.15)

(iv) From (B.15) we see that our coordinates (u, v) ‘end’ at the horizon. If
we wish to see the horizon as a regular region of our manifold, then we would
like to have coordinates that smoothly take us across the horizon. Thus we need
the horizon to be at finite values of our coordinates, unlike (B.15). Let we write

U = eαu, V = −e−αv (B.16)

where we will choose the constant α later. Assuming α > 0, we see that the
region outside the horizon is

U > 0, V < 0 (B.17)

and the horizon itself is
0 < U <∞, V = 0 (B.18)

Thus we have brought the horizon to a finite position in our new coordinates
U, V , and if the metric is smooth at U = V = 0 then we can continue the
spacetime past the region (B.17).

(v) From (B.16) we get

dU = αeαudu, dV = αe−αvdv (B.19)

Thus the metric (B.12) becomes

ds2 = −(1− 2M

r
)
e−α(u−v)

α2
dUdV +r2dΩ2

2 = − (r − 2M)

r

e−α(u−v)

α2
dUdV +r2dΩ2

2

(B.20)
Now note that

e−α(u−v) = e−2αr
∗

= e−2α[r+2M ln( r
2M−1)] = e−2αr(

r

2M
−1)−4αM = e−2αr(2M)4αM (r−2M)−4αM

(B.21)
We now see that if we choose

α =
1

4M
(B.22)

then we cancel the factor r − 2M in (B.20), getting

ds2 = −32M3

r
e−

r
2M dUdV + r2dΩ2 (B.23)
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This metric is now written in coordinates U, V, θ, φ, with

U = (
r

2M
− 1)

1
2 e

r
4M e

t
4M

V = −(
r

2M
− 1)

1
2 e

r
4M e−

t
4M (B.24)

Note that
UV = −(

r

2M
− 1)e

r
2M (B.25)

and we should understand the symbol r in (B.23) as the function r(U, V ) given
through the transcendental equation (B.25). Since we do not need the explicit
form of this function for our analysis, we leave it as the symbol r. All we note
for now is that at the horizon (where we are trying to get smooth coordinates)
the function r is a smooth function on the manifold, with r ≈ 2M(1− UV ).

B.3 Extending past the horizon

Figure B.1: The fully extended Schwarzschild geometry

The region outside the horizon was given by the coordinate range (B.17).
Let us now see how we would extend the spacetime past the horizon, to reach
the interior of the black hole. We let the metric continue to have the form
(B.23), where r(U, V ) will continue to be given through (B.25). There is no
problem with either equation at r = 2M . There will be a singularity at r = 0,
which is a real singularity: the curvature diverges there, and we cannot remove
this singularity with a coordinate transformation. From (B.25) we see that

r = 0 ↔ UV = 1 (B.26)
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We see that we can extend the coordinate range from the initial range (B.17) to
all values of U, V satisfying UV < 1. This spacetime is called the ‘extended black
hole spacetime’, and we depict it in fig.B.42. There is a ‘future singularity’ at
U > 0, V > 0, UV = 1; if an observer decides to fall into the black hole then he
will hit this singularity sometime in his future. But there is another singularity
– the ‘past singularity’ at U < 0, V < 0, UV = 1. We will discuss the structure
of this spacetime in more detail after drawing the Penrose diagram.

B.4 The Penrose diagram

The U, V coordinates cover all of our spacetime, but these coordinates do not
have a bounded range. Thus if we try to draw the U, V space on a sheet
of paper, we have to stop at a finite value of U, V , and we do not explicitly
see the picture of how the ‘points at infinity’ border our spacetime. To bring
these ‘points at infinity’ to a finite coordinate distance from the points in the
interior of our spacetime, we make a conformal rescaling of the metric. Here
the word ‘conformal’ means that at each point the metric is scaled by a number
gab(x) → Ω2(x)gab(x), so that the angles between different directions at the
point x do not change, and in particular null directions remain null directions.
Such a rescaling will help us to understand the causal structure of the spacetime,
including the behavior of ‘infinity’.

Figure B.2: Penrose diagram of Minkowski space

Let us first carry out this process for Minkowski spacetime; we will need this
result anyway to describe part of the black hole spacetime when the black hole
is made by ‘collapse’ of a shell. Minkowski spacetime is

ds2 = −dt2 + dr2 + r2dΩ2
2 (B.27)
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Let us write
U = t+ r, V = t− r (B.28)

getting
ds2 = −dUdV + r2dΩ2 (B.29)

where now the coordinates are U, V, θ, φ, and r = 1
2 (U − V ). Since

r =
1

2
(U − V ) ≥ 0 (B.30)

we have the alllowed range

−∞ < U <∞, −∞ < V <∞, U ≥ V (B.31)

so we have an infinite coordinate range. Let us write

Ũ = tanhU, Ṽ = tanhV (B.32)

so that
−1 < Ũ < 1, −1 < Ṽ < 1, Ũ ≥ Ṽ (B.33)

and the metric is
ds2 = −[

dU

dŨ

dV

dṼ
]dŨ Ṽ + r2dΩ2 (B.34)

But
dU

dŨ
= sech2 U =

1

1− Ũ2
,
dV

dṼ
= sech2 V =

1

1− Ṽ 2
(B.35)

so that

ds2 =
1

(1− Ũ2)(1− Ṽ 2)
[−dŨdṼ + r2(1− Ũ2)(1− Ṽ 2)dΩ2] (B.36)

So far we have just rewritten Minkowski spacetime in new coordinates, but now
let us make a conformal transformation, defining a new metric

g′ab = (1− Ũ2)(1− Ṽ 2)gab (B.37)

Thus the new metric is

ds′2 = −dŨdṼ + r2(1− Ũ2)(1− Ṽ 2)dΩ2 (B.38)

Let us ignore the angular directions; since we have spherical symmetry there is
no nontrivial structure in these directions, and the size if the angular sphere is
not relevant for the main computations we are interested in. Thus we get

ds′2 = −dŨdṼ (B.39)

with the coordinate range (B.33). The null directions are Ũ = U0 and Ṽ = V0.
This gives the Penrose diagram in fig.B.2.
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Figure B.3: Penrose diagram for the ‘eternal Schwarzschild hole’

We now do a similar transformation (B.32),(B.37) for the black hole metric
(B.23), getting

ds′2 = −32M3

r
e−

r
2M dŨdṼ (B.40)

We have to be careful about the coordinate ranges though. The spacetime again
ends at r = 0; this time there is a singularity there instead of a ‘simple origin
of coordinates’. But r = 0 is now given by solving UV = 1 which is

tanh−1Ũ tanh−1Ṽ = 1 (B.41)

This is a curve in Ũ , Ṽ space, and points beyond this curve are not in the
spacetime represented by the Penrose diagram, since they lie past the singularity.
We draw the Penrose diagram in fig.B.3. The singularity runs along a curve from
Ũ = 0, Ṽ = 1 to Ũ = 1, Ṽ = 0. Note that the causal structure of infinity is
not changed by any other conformal rescaling of the metric at interior points of
spacetime. Thus we can imagine a further rescaling which makes the singularity
a straight line Ũ = 0, Ṽ = 1 to Ũ = 1, Ṽ = 0; this is easier to draw, and is
typically what is done in figures. The essential property of the singularity we
cannot change in the picture is that the singularity is spacelike; The constant r
surface r = 0 is inside the horizon and so is spacelike instead of timelike.

B.5 The black hole formed by collapse

The black hole spacetime made above does not describe a realistic black hole
made by collapse of a star. The spacetime we have found has a ‘past singularity’,
which a collapsing star would not have, and also a second asymptotically flat
region, which we cannot hope to produce simply by letting a star collapse in our
starting spacetime. To get the correct spacetime for the collapsing star, note
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Figure B.4: Penrose diagram of the black hole made by collapse of a shell

that the metric inside a spherical shell is flat Minkowski spacetime. This follows
by the Birkoff theorem, which says that a spherically symmetric vacuum solution
to Einstein’s equations must be a piece of the Schwarzscild geometry; since we
have no source inside the shell, we must choose the geometry withM = 0, which
is just Minkowski space. Thus inside the shell we take Minkowski spacetime,
and outside the shell we must glue this to the black hole spacetime (using
‘Israel matching conditions’ across the shell). The resulting spacetime, shown
in fig.B.4, does not have either the past singularity or the second asymptotically
flat region.

To carry out this gluing, let us write the Kruskal and Minkowski coordinates
in a more convenient way. We let all null coordinates have units of length. Note
that the coordinates (B.16) were dimensionless. We now write

UK = 4Me
u

4M , VK = −4Me−
v

4M (B.42)

as our Kruskal coordinates. The black hole metric is then

ds2BH = −2M

r
e−

r
2M dUKdVK + r2dΩ2 (B.43)

The Minkowski coordiantes (B.28) are similarly given a label M

ds2M = −dUMdVM (B.44)

We let the black hole be made by collapse of a null shell at

UM = U0 (B.45)

We have to match metrics across this shell, since there is a coordinate system
where the metric is continuous across the shell. The matching is at a constant
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value of U , and we set
UK = U0 (B.46)

The metric functions can be made to agree by choosing an appropriate relation
between the two V coordinates

VK = VK(VM ) (B.47)

This function is to be found by matching

−2M

r
e−

r
2M dUKdVK = −dUMdVM (B.48)

Recall that
r =

UM − VM
2

(B.49)

This gives
4M

U0 − VM
e−

U0−VM
4M dVK = dVM (B.50)

The solution is

VK =

∫
dVM

U0 − VM
4M

e
U0−VM

4M = −4M [
U0 − VM

4M
e
U0−VM

4M − e
U0−VM

4M ] (B.51)

where we have set an arbitrary additive constant to zero.
Recall that the natural coordinate at infinity is given by (B.42)

v = −4M ln[− VK
4M

] = VM − U0 − 4M ln(
U0 − VM − 4M

4M
) (B.52)

Now recall that the horizon is VK = 0, and the region outside the horizon is
VK < 0. We will be interested in particular in the null rays VK = −ε, where ε is
small and positive; these are outgoing null rays just outside the horizon. From
(B.42) we see that VK → 0− corresponds to v → ∞. From (B.52) we see that
we get v → −∞ if the argument of the log goes to 0+, i.e.

VM → U0 − 4M ≡ V̄M (B.53)

Thus in our limit of interest we have

v ≈ −4M ln(V̄M − VM ) (B.54)

So we see that the natural coordinate at infinity v is related nonlinearly to the
natural coordinate at the horizon.

B.6 Field theory

We start with the lagrangian density

L =
1

2
(∂tφ)2 − 1

2
(∂xφ)2 − 1

2
m2φ2 (B.55)
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We write

φ(t, x) =

∞∑
n=−∞

φn(t)eiknx (B.56)

with
kn =

2πn

L
(B.57)

Note that since φ is real,
φn = φ∗−n (B.58)

We write
φn = φRn + iφIn (B.59)

The Lagrangian becomes

L =

∞∑
n=1

[L(φ̇Rn )2 − Lω2
n(φRn )2] +

∞∑
n=1

[L(φ̇In)2 − Lω2
n(φIn)2] +

L

2
[(φ̇0)2 − ω2

0(φ0)2]

(B.60)
where

ω2
n = k2n +m2 (B.61)

Thus we see that the quantum field is just a collection of harmonic oscillators.

B.7 Particle creation in Heisenberg representa-
tion

x̂ =
1√
2ω
e−iωtâ+

1√
2ω
eiωtâ† (B.62)

(f, g) = −i[f∂tg∗ − g∗∂tf ] (B.63)

Thus with
f =

1√
2ω
e−iωt (B.64)

(f, f) = −i 1

2ω
2iω = 1, (f, f∗) = 0 (B.65)

Now we write

x̂ =
1√
2ω
e−iωtâ+

1√
2ω
eiωtâ† =

1√
2ω′

e−iω
′tb̂+

1√
2ω′

eiω
′tb̂† (B.66)

Doing (., f) on both sides, we get â on the LHS, and on the RHS we get at
t = 0.

(−i) 1

2
√
ωω′

(i(ω′ + ω)) =
ω + ω′

2
√
ωω′
≡ α (B.67)

for b̂ and
(−i) 1

2
√
ωω′

(i(ω′ − ω)) =
ω′ − ω
2
√
ωω′
≡ β (B.68)
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for b̂†. Thus
So we get

â = αb̂+ βb̂† (B.69)

Then we get
|ψ >= |0 >a= Ce

1
2γb
†b† |0 >b (B.70)

We find
γ = −β

α
(B.71)

γ = −ω
′ − ω

ω′ + ω
(B.72)

B.8 Particle creation in curved space

The story of Hawking radiation really begins with the understanding of particle
creation in curved spacetime. (For reviews see [?].) Particles are described in
terms of an underlying quantum field, say a scalar field φ. We can write a
covariant action for this field, and do a path integral. But how do we define
particles? In flat space we expand the field operator as

φ̂ =
∑
~k

1√
V

1√
2ω

(
â~ke

i~k·~x−iωt + â†~k
e−i

~k·~x+iωt
)

(B.73)

where V is the volume of the spatial box where we have taken the field to

live, and ω =

√
|~k|2 +m2 for a field with mass m. The vacuum is the state

annihilated by all the â
â~k|0〉 = 0 (B.74)

and the â†~k create particles.
In curved spacetime, on the other hand, there is no canonical definition of

particles. We can choose any coordinate t for time, and decompose the field
into positive and negative frequency modes with respect to this time t. Let the
positive frequency modes be called f(x); then their complex conjugates give
negative frequency modes f∗(x). The field operator can be expanded as

φ̂(x) =
∑
n

(
ânfn(x) + â†nf

∗
n(x)

)
(B.75)

Then we can define a vacuum state as one that is annihilated by all the annihi-
lation operators

ân|0〉a = 0 (B.76)

The creation operators generate particles; for example a 1-particle state would
be

|ψ〉 = â†n|0〉a (B.77)
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We have added the subscript a to the vacuum state to indicate that the vacuum
is defined with respect to the operators ân. But since there is no unique choice
of the time coordinate t, we can choose a different one t̃. We will then have a
different set of positive and negative frequency modes, and an expansion

φ̂(x) =
∑
n

(
b̂nhn(x) + b̂†nh

∗
n(x)

)
(B.78)

Now the vacuum would be defined as

b̂n|0〉b = 0 (B.79)

and the b̂†n would create particles.
The main point now is that a person using the operators â, â† would think

that |0〉a was a vacuum, but he would not think that the state |0〉b was a vacuum
– he would find it to contain particles of the type created by the â†n. Let us see
how one finds exactly how many â† particles there are in the state |0〉b. The
mode functions fn are normalized using an inner product defined as follows.
Take any spacelike hypersurface, with volume element dΣµ (thus the vector
dΣµ points normal to the hypersurface and has a value equal to the volume of
the surface element). Then

(f, g) ≡ −i
∫
dΣµ (f∂µg

∗ − g∗∂µf) (B.80)

Under this inner product we will have

(fm, fn) = δmn, (fm, f
∗
n) = 0, (f∗m, f

∗
n) = −δmn (B.81)

Now from the two different expansions of φ̂ we have∑
n

(
ânfn(x) + â†nf

∗
n(x)

)
=
∑
n

(
b̂nhn(x) + b̂†nh

∗
n(x)

)
(B.82)

Taking the inner product with fm on each side, we get

âm =
∑
n

(hn, fm)b̂n +
∑
n

(h∗n, fm)b̂†n ≡
∑
n

αmnb̂n +
∑
n

βmnb̂
†
n (B.83)

Thus the vacuum |0〉a satisfies

0 = âm|0〉a =

(∑
n

αmnb̂n +
∑
n

βmnb̂
†
n

)
|0〉a (B.84)

Let us see how to solve this equation. Suppose we had just one mode, with a
relation

(b+ γb†)|0〉a = 0 (B.85)

The solution to this equation is of the form

|0〉a = Ceµb̂
†b̂† |0〉b (B.86)
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where C is a normalization constant and µ is a number that we have to deter-
mine. Expand the exponential in a power series

eµb̂
†b̂† =

∑
n

µn

n!
(b̂†b̂†)n (B.87)

With a little effort using the commutator [b̂, b̂†] = 1 we find that

b̂(b̂†b̂†)n = (b̂†b̂†)nb̂+ 2nb̂†(b̂†b̂†)n−1 (B.88)

Putting this in the series for the exponential, we find that

b̂eµb̂
†b̂† |0〉b = 2µb̂†eµb̂

†b̂† |0〉b (B.89)

Looking at (B.85) we see that we should choose µ = −γ2 , and we get

|0〉a = Ce−
γ
2 b̂
†b̂† |0〉b (B.90)

This state has the form

|0〉a = C|0〉b + C2b̂
†b̂†|0〉b + C4b̂

†b̂†b̂†b̂†|0〉b + . . . (B.91)

so it looks like a part that is the b vacuum, a part that has two particles of type
b, a part with four such particles, and so on.

Returning to our full equation (B.84) we have the solution

|0〉a = Ce−
1
2

∑
m,n b̂

†
mγmnb̂

†
n |0〉b (B.92)

where the matrix γ is symmetric and is given by

γ =
1

2

(
α−1β + (α−1β)T

)
(B.93)

Thus we see that
b̂k + e−4πMk ĉ†k (B.94)

is made of annihilation operators âK , and so will kill the vacuum. The state is
therefore ∏

k>0

e−e
−4πMkb†kc

†
k |0〉b ⊗ |0〉c (B.95)

For each fourier mode k we get a state that is entangled between the b, c spaces

e−e
−4πMkb†kc

†
k |0〉b⊗|0〉c = |0〉b⊗|0〉c−e−4πMkb†kc

†
k|0〉b⊗|0〉c+

1

2!
e−8πMkb†kb

†
kc
†
kc
†
k|0〉b⊗|0〉c . . .

(B.96)
This is

|0〉b ⊗ |0〉c − e−4πMk|1〉b ⊗ |1〉c + e−8πMk|2〉b ⊗ |2〉c . . . (B.97)
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B.9 Density matrices

Suppose we have a state ∑
n

Cn|n〉b ⊗ |n〉c (B.98)

If we trace over c, then we get the density matrix

ρ =
∑
n

|Cn|2|n〉bb〈n| (B.99)

Suppose
Cn = (−1)ne−4πMkn (B.100)

Then we have the probability of getting n pairs down by a factor

e−4πMkn (B.101)

This should equal
e−

kn
T (B.102)

Thus
T =

1

8πM
(B.103)

Restoring Newton’s constant, we get M → GM , getting

T =
1

8πGM
(B.104)

B.10 Entangled states

Suppose we have a 2 state system, with state

|ψ〉 =
1√
2

[| ↑〉1 ⊗ | ↓〉2 + | ↓〉1 ⊗ | ↑〉2] (B.105)

Suppose we want to trace over system 2, getting a density matrix for system 1.
First we write

|ψ〉〈ψ| = 1

2
[| ↑〉1 ⊗ | ↓〉2 + | ↓〉1 ⊗ | ↑〉2][1〈↑ | ⊗ 2〈↓ |+ 1〈↓ | ⊗ 2〈↑ |] (B.106)

This density matrix is made of 4 terms, which we write explicitly

|ψ〉〈ψ| = 1

2
[| ↑〉1 ⊗ | ↓〉2 1〈↑ | ⊗ 2〈↓ | (B.107)

+| ↑〉1 ⊗ | ↓〉2 1〈↓ | ⊗ 2〈↑ | (B.108)

+| ↓〉1 ⊗ | ↑〉2 1〈↑ | ⊗ 2〈↓ | (B.109)

+| ↓〉1 ⊗ | ↑〉2 1〈↓ | ⊗ 2〈↑ |] (B.110)
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In taking the trace over system 2, we keep only the terms where the state of
system 2 is the same in the bra and in the ket, and write down only the system
1 states for these terms

ρ =
1

2
[| ↑〉1 1〈↑ | + | ↓〉1 1〈↓ |] (B.111)

Let the basis of ket states be {| ↑〉1, | ↓〉1}. Then we can write

ρ =

(
1
2 0
0 1

2

)
(B.112)

Now we compute the entropy

S = −tr[ρ ln ρ] (B.113)

This works out to
−2(

1

2
ln(

1

2
)) = ln 2 (B.114)

Thus the entanglement entropy of the first system with the second is ln 2.

B.11 The problem with black hole disappearance

Suppose we start with an entangled system, and one part of it disappears. Then
we cannot write down any sensible wavefunction for the part that remains. To
see this, start with the following entangled system, and try to write down a
state for the first part alone

1√
2

[(+)(−) + (−)(+)]→ 1√
2

[(−) + (+)] (B.115)

But now we can change the basis of the part that has disappeared

(+′) = eiα(+), (−′) = e−iα(−) (B.116)

Now we would deduce the state

1√
2

[e−iα(+′)(−) + eiα(−′)(+)]→ 1√
2

[e−iα(−) + eiα(+)] (B.117)

which is a different state. For example if we let the two states be the up and
down z spins of a spin 1/2 particle, then first attempt would give a spin polarized
in direction x, while in the second attempt, with α = π

2 , we would get spin in
the direction y.
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