
1 Integration by parts

Suppose we have an integral ∫
D

d2z∂zf(z, z̄) (1)

where the integral ranges over a rectangular region called D:

D : a < x1 < b, c < x2 < d (2)

We should be able to integrate this by parts and write the result as an integral over the boundary
of D. Let

z = x1 + ix2, z̄ = x1 − ix2 (3)

We have

∂z =
1

2
[
∂

∂x1
− i

∂

∂x2
], ∂z̄ =

1

2
[
∂

∂x1
+ i

∂

∂x2
] (4)

Our integral is ∫ b

a

dx1

∫ d

c

dx2
1

2
[
∂

∂x1
− i

∂

∂x2
]f(x1, x2) (5)

The first term in then brackets in x1 can be integrated to give contributions from the two boundaries
at the two ends of the range of x1

1

2

∫ d

c

dx2[f(b, x2) − f(a, x2)] (6)

while the second term will give

−i1
2

∫ b

a

dx1[f(x1, d) − f(x1, c)] (7)

We can now see that all these contributions can be written as a boundary integral over z̄. We will
let the integral run anticlockwise along the boundary of D. We have

x1 = b :
1

2

∫ d

c

dx2f =
1

2

1

(−i)

∫ d

c

dz̄f → i

2

∫
∂D

dz̄f

x2 = d : − i
1

2

∫ b

a

dx1f = −i1
2
(−)

∫ a

b

dz̄f → i

2

∫
∂D

dz̄f

x1 = a : − 1

2

∫ d

c

dx2f = −1

2

1

(−i) (−)

∫ c

d

dz̄f → i

2

∫
∂D

dz̄f

x2 = c : i
1

2

∫ b

a

dx1f = −1

2

∫ b

a

dz̄f → i

2

∫
∂D

dz̄f (8)

Thus we see that ∫
D

d2z∂zf =
i

2

∫
∂D

dz̄f (9)

Similarly, ∫
D

d2z∂z̄f = − i

2

∫
∂D

dzf (10)

To derive these results in brief we can use

dx1 ∧ dx2 =
i

2
dz ∧ dz̄ (11)
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2 The delta function

Consider the expression

∂z̄
1

z
(12)

If z 6= 0, this vanishes. But at z = 0 there is a singularity, so it is not clear what we should write.
If there is a contribution from z = 0 then we should write

∂z̄
1

z
= αδ2(z, z̄) (13)

where ∫
d2zδ2(z, z̄) = 1 (14)

To compute α, let us integrate both sides of (13) over a disc D of radius R. The RHS gives α. The
LHS gives ∫

D

d2z∂z̄
1

z
= − i

2

∫
∂D

dz
1

z
(15)

Writing for z on the boundary of the disc

z = Reiθ (16)

we get ∫
dz

z
=

∫
Rieiθdθ

Reiθ
= i

∫
dθ = 2πi (17)

Thus

− i

2
(2πi) = α, α = π (18)

Thus we have

∂z̄
1

z
= πδ2(z, z̄) (19)

3 Conformal transformations

A conformal transformation is a change of coordinates

z′ = z′(z) (20)

where z′(z) is an analytic function of z. The only function of z that is regular everywhere, including
at infinity, is a constant. Thus we will typically have singularities at some points z. A simple
example of a transformation that will be useful to us is

w = log z, z = ew (21)

Write
z = reiθ (22)

Then writing w = wR + iwI we get

w = log[reiθ] = log r + iθ (23)

2



Thus
−∞ < wR <∞ (24)

and
0 < wI < 2π (25)

where we see that the two ends of the range of wI are identified as the same point. Thus in the w
coordinates we get a cylinder. The metric on the plane was

ds2 = dx2
1 + dx2

2 = dzdz̄ (26)

On the cylinder this will be

ds2 = dzdz̄ =
dz

dw

dz̄

dw̄
dwdw̄ = [ewew̄]dwdw̄ (27)

If we make a conformal transformation we can change the metric by a conformal factor

ds′2 = [ewew̄]−1ds2 (28)

and the new metric will be
ds′2 = dwdw̄ = dw2

R + dw2
I (29)

so we get the usual flat metric on the cylinder.

4 Conformal primary operators

Suppose we make a change of coordinates

z′ = z′(z) (30)

Then an operator O(z) will change to some operator O′(z′). The location of the operator has
changed, but in general the form of the operator will change as well. Let us see how this happens.

The simplest operator was X(z), for the free scalar field. But we had sen that this was not a
good conformal operator, and did not have a well defined conformal scaling dimension. The next
simplest operator was ∂zX(z). Under the change of coordinates we will have

∂zX(z) = (
∂z′

∂z
)∂z′X(z′) (31)

Thus not only has the location of the operator changed, it also got multiplied by a number (∂z′(z)
∂z

).
If we have a transformation like the one above with

O′(z′, z̄′) = [
∂z′

∂z
]∆[

∂z̄′

∂z̄
]∆̄O(z, z̄) (32)

Then we say that O is a conformal primary operator with scaling dimensions

(∆, ∆̄) (33)

Thus ∂zX is a primary with dimensions (1, 0).

3



Not all operators will transform as primaries; in fact most will not, so a primary is a very special
kind of operator. Consider

∂2
zX (34)

Under the change of coordinates this will be

∂z[(
∂z′

∂z
)∂z′X(z′)] = (

∂z′

∂z
)2∂2

z′X(z′) + (
∂2z′

∂z2
)∂z′X(z′) (35)

The first part on the RHS suggests that this operator has scaling dimensions (2, 0), but the second
term is not of the form that would give the scaling behavior required of a primary. Thus ∂2

zX is
not a primary operator.

5 Conformal transformations on correlation functions of primary

operators

Suppose we have the operator ∂zX. On the plane z the 2-point functions is

< ∂zX(z1)∂zX(z2) >= −1

2

1

(z1 − z2)2
(36)

Let us make the coordinate change to the cylinder

w = ln z (37)

Then we have

∂zX(z1) =
dw

dz
(z1)∂wX(w1) =

1

z1
∂wX(w1) = e−w1∂wX(w1) (38)

∂zX(z2) =
dw

dz
(z2)∂wX(w2) =

1

z2
∂wX(w2) = e−w2∂wX(w2) (39)

Thus
< ∂zX(z1)∂zX(z2) >= e−(w1+w2) < ∂wX(w1)∂wX(w2) > (40)

But

< ∂zX(z1)∂zX(z2) >= −1

2

1

(z1 − z2)2
= −1

2

1

(ew1 − ew2)2
(41)

Thus

< ∂wX(w1)∂wX(w2) > − e(w1+w2)

2(ew1 − ew2)2
(42)

Thus we have been able to compute the 2-point function of ∂X on the cylinder.

6 The metric and its variations

The metric on flat space is
ds2 = dzdz̄ (43)
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which gives

gzz̄ =
1

2
(44)

with other components zero.

Let us see some properties of the variation of the metric. We have

gabg
bc = δc

a (45)

If we write
gab = ḡab + δgab (46)

gab = ḡab + δgab (47)

Then we find that
[ḡab + δgab][ḡ

bc + δgbc] = δc
a + δgabḡ

bc + ḡabδg
bc (48)

Thus we need
δgabḡ

bc + ḡabδg
bc = 0 (49)

or contracting both sides with ḡad

δgdc = −δabḡ
bcḡad (50)

Thus the variation of the inverse metric is the negative of what we get by raising the indices of the
variation of the metric itself.

Now let us look at the effect of diffeomorphisms. The proper distance between points does not
change under a coordinate change. Thus we have

ds2 = gabdx
adxb = g′a′b′dx

′a′

dx′b
′

(51)

Writing

dxa =
∂xa

∂x′a
′
dx′a

′

, dxb =
∂xb

∂x′b
′
dx′b

′

(52)

we have

gab
∂xa

∂x′a
′

∂xb

∂x′b
′
dx′a

′

dx′b
′

= g′a′b′dx
′a′

dx′b
′

(53)

or comparing coefficients of dx′a
′

dx′b
′

g′a′b′ = gab
∂xa

∂x′a
′

∂xb

∂x′b
′

(54)

Suppose we have an infinitesimal transformation

x′a = xa + ǫa(x) (55)

Then
xa = x′a − ǫa(x) (56)

∂xa

∂x′a
′
≈ δa

a′ − ǫa,a′ (57)
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where the approximation arises from the fact that we do not distinguish derivatives with respect
to x and x′ in the last term. Then we find

g′a′b′ = gab[δ
a
a′ − ǫa,a′ ][δb

b′ − ǫb,b′ ] ≈ ga′b′ − gab′ǫ
a
,a′ − ga′bǫ

b
,b′ (58)

Thus
δga′b′ = g′a′b′ − ga′b′ = −gab′ǫ

a
,a′ − ga′bǫ

b
,b′ (59)

If the components of g are constant at leading order then we can write

δga′b′ = −ǫb′,a′ − ǫa′,b′ (60)

For the metric (44) we will therefore have

δgzz = −2ǫz,z (61)

Note that

ǫz = gzz̄ǫ
z̄ =

1

2
ǫz̄ (62)

Thus
δgzz = −2ǫz,z = −∂zǫ

z̄ (63)

We also have
δgzz = −gzz̄gzz̄δgz̄z̄ = 4∂z̄ǫ

z (64)

7 Making variations of the metric

Suppose we have computed the path integral with the insertion of some operators

ZO =

∫
D[X]e−S(g,X)O1(z1) . . . Ok(zk) =< O1(z1 . . . Ok(zk) >g (65)

We have noted the fact that the expressions all depend upon the metric g of the 2-d base space on
which our field theory is defined. Now suppose we make a localized change in the metric

gab → gab + δgab (66)

where δgab 6= 0 only in a small region which does not overlap with the locations zi. Ignoring for
the moment any change in the measure D[X] we have

δZO =

∫
D[X]e−S(g,X)[−

∫
d2z

δS

δgab(z)
δgab(z)]O1(z1) . . . Ok(zk) (67)

But we will write

2
δS

δgab
= Tab (68)

Thus we have

δZO =

∫
D[X]e−S(g,X)[−

∫
d2z

1

2
Tab(z)δg

ab(z)]O1(z1) . . . Ok(zk) (69)
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Imagine making the variation of g at just one point as follows

δgzz = δ2(z − z0) (70)

Then we get

δZO = −1

2

∫
D[X]e−S(g,X)Tab(z0)O1(z1) . . . Ok(zk) = −1

2
< Tab(z0)O1(z1) . . . Ok(zk) > (71)

Thus we get a correlator with T inserted along with the other operators.

What we want now is a way to relate this correlator to one without the T insertion. This will
be possible because of a Ward identity. The argument goes as follows. All we have done is make
a small localized change in the metric, and looked at the change in the correlator. Let us see if
there is some other way to make the same change in the metric. We can change metrics by making
diffeomorphisms. We know that

δgzz = 4∂z̄ǫ
z (72)

If we want
δgzz = δ2(z − z0) (73)

then because

∂z̄
1

z
= πδ (74)

we should take

4∂z̄ǫ
z =

1

π
∂z̄

1

z
(75)

From this we see that we need the diffeomorphism

ǫz =
1

4π

1

z − z0
(76)

Thus we see that we have a holomorphic diffeomorphism everywhere, except at z = z0 where there
is a singularity. Thus all we have to do is start with the original correlator (wothout the T insertion)
and see what the change is if we make this diffeomorphism. Thus we write

δZO =< δǫO1O2 . . . Ok > + . . . < O1O2 . . . δǫOk > (77)

where δǫO is the change in the operator O under the diffeomorphism ǫ. At this level of generality
we cannot say more, but now let us assume that the Oi are conformal primaries. Then we have
one contribution to the change from just the shift of the location of O

δǫOi = ǫz∂zOi =
1

4π

1

zi − z0
∂zO(zi) (78)

The other part of the change comes because of the change in local scaling

Oi(zi) → Oi(z
′) = (

∂z

∂z′
)∆i(zi)Oi(zi) (79)

But
z′ = z + ǫz (80)

Thus
∂z

∂z′
= 1 + ∂zǫ

z = 1 +
1

4π

1

(z − z0)2
(81)
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Thus we have

Oi(zi) → [1 +
1

4π

1

(zi − z0)2
]∆iOi(zi) (82)

which gives a change

δOi =
1

4π

∆i

(zi − z0)2
(83)

Thus the total change in the correlator is

δZO =
1

4π

∑
i

< O1 . . . [
∆i

(zi − z0)2
Oi +

1

(zi − z0)
∂zO(zi)] . . . Ok > (84)

Comparing to the change δZ when we inserted T , we get

−1

2
< Tab(z0)O1(z1) . . . Ok(zk) >=

1

4π

∑
i

< O1 . . . [
∆i

(zi − z0)2
Oi−

1

(zi − z0)
∂zO(zi)] . . . Ok > (85)

which gives

< Tab(z0)O1(z1) . . . Ok(zk) >= − 1

2π

∑
i

< O1 . . . [
∆i

(zi − z0)2
Oi −

1

(zi − z0)
∂zO(zi)] . . . Ok > (86)

In particular if we bring T close to one of the primary operators Oi then we see the OPE

T (z)O(z′) = − 1

2π
[

∆i

(z − z′)2
O(z′) +

1

z − z′
∂zO(z′)] + . . . (87)

where we have written only the singular terms.

8 The free scalar field

For the free scalar field we have the action

S =
1

2πα′

∫
d2ξ

1

2
∂aX∂bXg

ab =
1

2πα′

∫
d2ξ

1

2
[∂zX∂zXg

zz + ∂z̄X∂z̄Xg
z̄z̄ + 2∂zX∂z̄Xg

zz̄ ] (88)

The stress tensor is defined as

Tab =
2√−g

δS

δgab
(89)

Thus we have

Tzz =
1

2πα′
∂zX∂zX (90)

Consider the primary ∂zX, and look at the OPE

Tzz(z)∂zX(z′) ∼ 1

2πα′
: ∂zX∂zX(z) : ∂zX(z′) (91)

The leading term comes if we contract one of the two ∂X factors at z with the one at z′. We set
α′ = 1. This gives

1

2π
(2)(−1

2

1

(z − z′)2
)∂zX(z) = − 1

2π

1

(z − z′)2
∂zX(z) (92)
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Note that we still have the operator ∂zX at the location z. We can write it at the location z′ with
a correction term

∂zX(z) = ∂zX(z′) + (z − z′)∂z[∂zX] + . . . (93)

Thus the OPE gives

Tzz(z)∂zX(z′) ∼ − 1

2π

1

(z − z′)2
[∂zX(z′)+(z−z′)∂z [∂zX]] = − 1

2π
[

1

(z − z′)2
∂zX(z′)+

1

(z − z′)
∂z[∂zX]]+. . .

(94)
which agrees with the general result in the above section when we note that ∆z = 1 for the operator
∂zX.

In what follows we will redefine T with a scaling so that we do not get the factor − 1
2π

; this is more
conventional.

9 The algebra of analytic diffemorphisms

Consider a change of coordinates
Tm : z′ = z + ǫzm+1 (95)

where ǫ is small. Let us follow this up with another transfirmation

Tn : z′′ = z′ + ǫ′z′n+1 (96)

We have

z′′ = z + ǫzm+1 + ǫ′(z + ǫzm+1)n+1

= z + ǫzm+1 + ǫ′zn+1[1 + ǫzm]n+1

≈ z + ǫzm+1 + ǫ′zn+1[1 + (n+ 1)ǫzm]

≈ z + ǫzm+1 + ǫ′zn+1 + (n + 1)ǫǫ′zm+n+1 (97)

Thus
TnTm : z′′ ≈ ǫzm+1 + ǫ′zn+1 + (n+ 1)ǫǫ′zm+n+1 (98)

If we had done these transformations in the reverse order then we would get

TmTn : z′′ ≈ z + ǫzm+1 + ǫ′zn+1 + (m+ 1)ǫǫ′zm+n+1 (99)

Thus the commutator is
[Tn, Tm] : z′′ = z + ǫǫ′(n−m)zm+n+1 (100)

This is again a transformation of the same type as before. Thus we define the infintesimal generators
as

Tm = I + ǫLm (101)

and then we find
[Ln, Lm] = (n−m)Ln+m (102)

So we get the Virasoro algebra of diffeomorphisms.
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This is the way coordinate changes behave. But now we have to think about objects that live on
the z plane. There are field operators φ, ∂φ etc, and they will be affected by the diffeomorphims.
Some operators will just chnage their locatiobn, some will scale in addition, and some will distort
and become completely different operators. Is there a sense in which we should write an algebra
like Ln which can derive the action on these fields?

10 Conformal transformations

Let us start with the idea of quantum states. Thus imagine that we are on the cylinder, and we
have a particular state ψ. This state is defined on the circle at some τ = τ0. Now we make the
diffeomorphism Tm. We now have our spatial circle as a different, distorted one, and are asking
what the state of the system looks like on this new circle. Suppose the change of the state is given
by the operator L̂m

|ψ′〉 = |ψ〉 + ǫL̂m|ψ〉 (103)

We might think tht these operators should satisfy the algebra (102). But this turns out to not be
strictly true; in fact we get the algebra with a central extension

[Ln, Lm] = (n−m)Ln+m +
c

12
δn+m,0 (104)

Let us see how this happens. We proceed in the folowing steps.

(A) Let us start with a cylinder with the usual flat metric on it. Let the coordinate be called
w = τ + iσ. Let us make the slice S

τ = τ0, 0 ≤ σ < 2π (105)

On this slice we take a state |ψ〉.

(B) Consider the new slice S′ which is constructed as follows. Each point on the cylinder is moved
to a new point

w → w + ǫf(w) (106)

where f(w) is an analytic function in the vicinity of S.

This new slice is thus a new curve on the cylinder. It is not ‘straight’, and is in fact longer than the
initial slice S. But since it cuts across the entire cylinder, we should be able to specify the state of
the system on this slice. Let this state be |ψ′〉.

Now comes the main point. In principle the space of states H made on S have no relation to the
states H ′ made on S′. The two slices are different, and so the space of states on them are different.

We can still make a map
H ↔ H ′ (107)
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which maps states on S to states on S′. This is possible because we are describing the same system
in two ways. A state is just an assignment of weights wi to classical configurations Ci

|ψ〉 =
∑

i

wiCi (108)

The weights wi are determined by using the path integral, as we did for the Ising model. The
configurations are different for S′, but we can again do the path integral to get

|ψ′〉 =
∑

i

w′

iC
′

i (109)

So for a given situation we can make each of the states |ψ〉, |ψ′〉, and so there will be a map like
(107).

(C) Now we try to do something stronger. We try to see if we can think of the state ψ′〉 as a state in
the space H itself. Why should that be possible? The length of S′ is different from that of S, and
so there is no way to map the configurations C ′

i rigorously to the configurations Ci. In a general
field theory we in fact cannot make such a map. But a conformal field theory is special, so we may
be able to do something.

Let us make a change of coordinates which makes S′ look like S. The points on S′ were

τ0 + ǫRe[f(w)], σ + ǫIm[f(w)] (110)

So we make a put new coordinates on the cylinder

w′ = w − ǫf(w) (111)

This makes the points on S′ have the values

(τ = τ0, σ) (112)

so the slice S′ again seems to have a length 2π. But this is of course not true; a coordinate change
cannot change the actual length of a slice. We have to note that the metric was initially

gab = δab (113)

and now will be
g′ab = e2ρδab (114)

where

e2ρ = (
df(w)

dw
)(
df̄(w̄)

dw̄
) (115)

So even though the slice S′ may look like S, we have to do our CFT with a different metric. But
now we use the fact that we have a conformal theory. Thus we should be able to change the metric
by a conformal factor

g′ab → e−2ρg′ab = δab (116)

and correlation functions should not change. If we can do this, then we have really come back to
the slice S and the original field theory, so all we have to ask is what state we got on S. It will of
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course not be the same state as |ψ〉. To see what kinds of changes are expected, let us first ignore
the change in τ in our diffeomorphism, and look at the chage in σ alone. The shift from S to S′

took a point σ to σ + δσ(σ), and the change of coordinates relabelled this point as σ. Thus we
are left with a real shift of the point by δσ(σ), even though the coordinates of S′ look just like the
coordinates on S. So a function φ(σ) will change to a function

φ(σ) = φ(σ) + δσ(σ)∂σφ (117)

Thus there is a change of state becaue the classical configurations change in the expected way.
But because of the change in metric, there will be an additional change that we must look at.
The path integral is different, and in particular we do not know how to make the enw measure.
this is because to do the path integral we have to first take a lattice of points and then do an
integral

∫
dφi at each of these points. Suppose we took a regular square grid of points. After

the conformal transformation the metric was different, so we have to ask what is the new lattice
of points. The square grid does not look square now, so we have to add or remove points from
places where the density has become lower or higher than before. Thus the overall path integral
will have a normalization that will be different from the one before the conformal transformation.
This means that we cannot get the correct overall normalization of the new state easily, though we
can find the relative contributions of the classical configurations Ci in the state. Thus we have an
additional correction from the measure changes

|ψ〉 → α|ψ〉 (118)

So strictly speaking we should write the change in configuration under the diffeomorphism, and
also note the change in the measure. If we ignore the latter, we can still write the state but upto
an overall normalization. It turns out that this normalization change gives the central extension of
the conformal algebra. Thus we will get not a true representation of the diffeomorphism algebra,
but a ‘projective representation’, which is the one with the central charge.

11 Making diffeomorphisms with Tzz

Let us make a change of coordinates
z′ = z + ǫ(z) (119)

Then we will get a change of metric
δgzz = 4∂z̄ǫ

z (120)

and the change in the path integral is

δZ = −
∫
d2z

δS

δgzz
δgzz = −

∫
d2z

1

2
Tzz4∂z̄ǫ

z (121)

We can integrate this by parts, getting

δZ = −
∫

∂

dz
(−i)π

2
2Tzz = iπ

∫
∂

dzTzzǫ
z (122)

Suppose the variation of confined to a bounded region D. Suppose we took two different contours
C1, C2, both of which enclose D. Then on each of them we will get∫

C1

dzTzzǫ
z =

∫
C2

dzTzzǫ
z (123)
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Suppose we take
ǫz = zm+1 (124)

Then we have the diffeomorphism for Lm. Thus suppose we want to change a state at the origin
by Lm. We should use the operator ∫

C

dzTzzǫ
m+1 (125)

12 OPE of TT

If the the operator T had a good scaling dimension, then it would be 2. We can see this from the
example of the free field, or more generally from the variation

δZ =< −
∫
d2zTzz∂z̄ǫ

z > (126)

The LHS has no units, d2z has units L2, ∂z̄ has units 1
L

and ǫz has units L. Thus the OPE of two
T operators must have the form

T (z′)T (z) ∼ α

(z′ − z)4
+

2T (z)

(′z − z)2
+
∂zT (z)

(z −′ z)
+ . . . (127)

There can be no cubic term because the OPE must be symmetric in the two T operators. Here α
is a constant which we will now determine.

13 Algebra of diffeomorphisms

Let us see how such operators commute. First we apply Lm, then Ln. Let us define

1

2πi

∫
C

dz ≡
∫

′

C

(128)

Let us consider the following operator

Tm :

∫
′

C1

dzTzz(z)z
m+1 (129)

We follow this up with another operator

Tn :

∫
′

C2

dz′Tzz(z
′)z′m+1 (130)

where C2 is outside C1. Thus we have

∫
′

C2

dz′z′n+1Tzz(z
′)

∫
′

C1

dzzm+1Tzz(z) (131)
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where C1 is inside C2. If we do the operations in the other order, we get

∫
′

C′

2

dz′z′n+1Tzz(z
′)

∫
′

C1

dzzm+1Tzz(z) (132)

where C ′

2 is inside C1. The difference is equal to keeping z fixed and letting z′ circle anticlockwise
around z in a contour C

TnTm − TmTn :

∫
′

C

dz′z′n+1Tzz(z
′)

∫
′

C1

dzzm+1Tzz(z) (133)

Let us do the C integral first. We expand the TT in an OPE

Tzz(z
′)Tzz(z) ∼

α

(z′ − z)4
+

2Tzz(z)

(z′ − z)2
+

∂T (z)

(z′ − z)
+ . . . (134)

Let us deal with the first term. We have
∫

′

C

α

(z′ − z)4
z′n+1zm+1 =

∫
′

C

(n+ 1)n(n− 1)αzm+n−1 =
α

6
(n3 − n)zn+m−1 (135)

The next integral gives

∫
′

C1

dz
α

6
(n3 − n)zn+m−1 =

α

6
(n3 − n)δm+n,0 (136)

Now let us look at the next term. We have
∫

′

C

dz′
2T (z)

(z′ − z)2
z′n+1zm+1 = 2(n + 1)Tzz(z)z

m+n+1 (137)

The next integral gives
2(n+ 1)Tn+m (138)

Now look at the last term. We have
∫

′

C

∂T (z)
1

(z′ − z)
z′n+1zm+1 = ∂Tzz(z)z

n+m+2 (139)

In the next integral we can integrate by parts to get

∫
C1

dz∂Tzz(z)z
n+m+2 = −

∫
C1

dzTzz(z)(n +m+ 2)zn+m+1 = (n+m+ 2)Tn+m (140)

Combining the last two contributions we get

(2n+ 2 − n−m− 2)Tn+m = (n−m)Tn+m (141)

Thus we get the algebra

[Tn, Tm] = (n−m)Tn+m +
α

6
δn+m,0 (142)

To make this agree with the Virasoro algebra, we see that we need to define

α =
c

2
(143)
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14 Computing the curvature

Let the metric be

gzz̄ =
1

2
e2ρ, gzz̄ = 2e2ρ (144)

The connection components are

Γa
bc =

1

2
gad[gdb,c + gdc,b − gbc,d] (145)

We then get

Γz
zz =

1

2
gzz̄[gz̄z,z + gz̄z,z − gzz,z̄] =

1

2
2e−2ρ[

1

2
e2ρ2ρ,z +

1

2
e2ρ2ρ,z] = 2ρ,z (146)

Γz̄
zz =

1

2
gz̄z[gzz,z] = 0 (147)

Γz
z̄z =

1

2
gzz̄[gz̄z,z̄ − gz̄z,z̄] = 0 (148)

So there are no mixed components of the connection. The only nonvanishing components are

Γz
zz = 2ρ,z, Γz̄

z̄z̄ = 2ρ,z̄ (149)

The curvature components are

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

cfΓf
bd − Γa

dfΓf
bc (150)

If we lower the index on R, then we will have antisymmetry in the first pair of indices, and
antisymmetry in the second pair. Thus we can only have the nonvanishing component

Rz̄zz̄z = gz̄zR
z
zz̄z (151)

Thus we compute

Rz
zz̄z = Γz

zz,z̄ − Γz
zz̄,z + Γz

z̄fΓf
zz − Γz

zfΓf
zz̄ = Γz

zz,z̄ = 2ρ,zz̄ (152)

Thus
Rz

zz̄z = −Rz
zzz̄ = −2ρ,zz̄ (153)

Thus
Rzz̄ = −2ρ,zz̄ (154)

R = gzz̄Rzz̄ + gz̄zRz̄z = 2(2)e−2ρ(−2ρ,zz̄) = −8e−2ρρ,zz̄ (155)

Note that

ρ,zz̄ =
1

4
△̂ρ (156)

where
△̂ρ = 4ρ,zz̄ (157)

is the laplacian evaluated using the flat metric on the z plane. Thus

R = −2e−2ρ△̂ρ (158)
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15 The stress tensor

Let
T̂ = T̂zz̄g

zz̄ + T̂z̄zg
z̄z = 4T̂zz̄e

−2ρ = µR (159)

Then
T̂zz̄ =

µ

4
Re2ρ =

µ

4
(−8e−2ρρ,zz̄)e

2ρ = −2µρ,zz̄ (160)

Now look at the conservation equation. We have

T̂zz̄;
z̄ + T̂zz;

z = 0 (161)

We can write this as
T̂zz̄;zg

zz̄ + T̂zz;z̄g
z̄z = 0 (162)

which gives
T̂zz̄;z + T̂zz;z̄ = 0 (163)

Using the fact that the connection has only z terms or only z̄ terms, we get

T̂zz̄,z − Γz
zzT̂zz̄ + T̂zz,z̄ = 0 (164)

Thus
T̂zz,z̄ = −(−2µρ,zz̄),z + 2ρ,z(−2µρ,zz̄) = 2µρ,zzz̄ − 4µρ,zρ,zz̄ (165)

This can be rewritten as
T̂zz,z̄ = 2µ[ρzz − (ρ,z)

2],z̄ (166)

Thus we see that
Tzz ≡ T̂zz − 2µ[ρzz − (ρ,z)

2] (167)

satisfies
Tzz,z̄ = 0 (168)

We will call this as the holomorphic stess tensor, and use this in all our constructions in the CFT.
But we should note that while T̂zz was a component of a tensor, Tzz is not. Instead, it will transform
with an inhomogeneous term under coordinate transformations.

Now suppose we obtained this ρ from an analytic transformation. Then we would have

ds2 = dzdz̄ = dz′dz̄′
dz

dz′
dz̄

dz̄′
(169)

Thus if the new coordinate is given by
z = f(z′) (170)

Then the new metric has

e2ρ =
df

dz

df̄

dz̄
(171)

Thus

ρ =
1

2
[log f ′ + log f̄ ′] (172)

ρ,z =
1

2

f ′′

f ′
(173)
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ρ,zz =
1

2
(
f ′′′

f ′
− (

f ′′

f ′
)2) (174)

Tzz = −2µ[ρzz − (ρ,z)
2] = −2µ[

1

2
(
f ′′′

f ′
− (

f ′′

f ′
)2) − 1

4
(
f ′′

f ′
)2] = −µ[

f ′′′

f ′
− 3

2
(
f ′′

f ′
)2] (175)

The expression
f ′′′

f ′
− 3

2
(
f ′′

f ′
)2 (176)

is called the Schwarzian derivative of f with respect to z.

16 The TT OPE

We have seen that inserting ǫT at the origin is equivalent to a diffeomorphism

z = z′ +
ǫ

z
(177)

Thus
f ′ = 1 − ǫ

z2
(178)

f ′′ =
2ǫ

z3
(179)

f ′′′ = −6ǫ

z4
(180)

Thus

T (z) → −µf
′′′

f ′
=

6µǫ

z4
(181)

where we have noted that the other term in the Schwarzian is O(ǫ2).

We had earlier written the OPE as

T (0)T (z) ∼ α

z4
+ . . . (182)

Thus we see that
α = 6µ (183)

We will later find it convenient to write
α =

c

2
(184)

in which case we will get

µ =
c

12
(185)

Thus we find that
Tzz̄ = − c

6
ρzz̄ (186)
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17 Computing T on the cylinder

We have
z = ew (187)

Thus
f(w) = ew (188)

f ′′′

f ′
= 1 (189)

(
f ′′

f ′
)2 = 1 (190)

f ′′′

f ′
− 3

2
(
f ′′

f ′
)2 = −1

2
(191)

Thus

< Tzz >= −1

2
µ = − c

24
(192)

We get this value also from the Casimir energy computation.

18 The effect of curvature

We have found that

< 2
δS

δgzz̄
>=< Tzz̄ >= −2µρzz̄ = −µ

2
△̂ρ = − c

24
△̂ρ (193)

where
△̂ρ = 4ρ,zz̄ (194)

is the laplacian evaluated using the flat metric on the z plane. But

δS

δgzz̄
=
δS

δρ
[
δgzz̄

δρ
]−1 =

δS

δρ
[−4e−2ρ]−1 = −1

4
e2ρ δS

δρ
(195)

Thus
δS

δρ
=

c

12
e−2ρ△̂ρ =

c

12
△ρ (196)

Thus

S =
c

24

∫
ρ△ρ (197)

where all integrals are evaluated with the correct metric on the plane (as opposed to the flat metric).
Noting that

R = −2e−2ρ△̂ρ = −2△ρ (198)

we get that

ρ = −1

2
△−1R (199)

and

S =
c

48

∫
R△−1R (200)

where again all integrals are evaluated with the correct metric on the surface.
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