Statistical Mechanics



Newton's laws 1n principle tell us how anything works

But in a system with many particles, the actual computations can become
complicated.

We will therefore be happy to get some 'average' or approximate behavior of the
system that will be useful for practical purposes

Describing this average dynamics is the goal of thermodynamics

A microscopic level fundamental understanding of thermodynamics was found
later, and this field is called statistical mechanics



Average energy

Suppose we have probability P; to have energy F;

Then the average energy 1s

Continuous variables: Probability for any given value 1s zero, but we have a
probability for a range

P(v) dv
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Area under curve / P(v)dv =1

>

U

Sometimes we may give the number of particles per unit velocity range

N(v)dv particles have momentum between v and v + dv

N(v) 4

Area under curve / N(v)dv

— Ntotal
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T T ) > 1)
Vg 2v; 3v,
56. A sample of N molecules has the distribution of
speeds shown in the figure above. P(v)dv is an
estimate of the number of molecules with speeds

between v and v + dv, and this number 1s

nonzero only up to 3v,, where v, is constant.
Which of the following gives the value of a ?

(A) a = N
3y,
N
(B) a =—
20,
©€) a=
Yo
(D) a = 3N
20,

(E) a=N
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Hot bath,

temperature 1’ The particle can get

energy

from the hot walls
./ when 1t
touches them

Basic law of Statistical Mechanics: Probability for the particle to have energy F

_ B
P o< e kT

Here k = 1.38 x 10723 J K~ ! is the Boltzmann constant



7'7. An ensemble of systems 1s in thermal equilibrium GRE0177

with a reservoir for which kT = 0.025 eV.
State A has an energy thatis 0.1 eV above that
of state B. If it 1s assumed the systems obey
Maxwell-Boltzmann statistics and that the
degeneracies of the two states are the same, then
the ratio of the number of systems in state A to
the number 1n state B 1s

(A) e+
(B) e+025
©) 1
(D) 025
(E) e
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1
For each degree of freedom, (E) = ikT

A state with lower energy 1s more likely ...



First consider the 1-dimensional problem

The most likely speed1s v =10



Hot bath,
temperature 1’

(g 4vy)
P X € 2kT

Many velocities U correspond
to the same speed v

Higher speeds are suppressed because
they have more energy

Higher speeds are enhanced because
there are more possible velocities
for higher speeds



57. Which of the following statements 1s (are) true for
a Maxwell-Boltzmann description of an ideal gas
of atoms 1n equilibrium at temperature 7 ?

L.
I1.

I11.

(A) 1
(B) 1

(C) -
(D) -

The average velocity of the atoms 1s zero.
The distribution of the speeds of the atoms
has a maximum at v = 0.

The probability of finding an atom with zero
kinetic energy 1s zero.

only

I only
[ and II
[ and

(E) -

I and III
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For each degree of freedom,

(E)

Hot bath,
temperature 1’

N

K

— kT

(F) = <%mv2> = %kT
= (Sme?) + (5 Ko?)

1 1
= —kT + kT = kT
2 2



Hot bath,
temperature 1’

Particle in 3-d

2
Yy




GREO177
5. A three-dimensional harmonic oscillator 1s 1n
thermal equilibrium with a temperature reservoir
at temperature 7. The average total energy of the
oscillator 1s

1
(A) 5 kT
(B) kT

3
(C) 5 kT
(D) 3kT

(E) 6kT
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5. A three-dimensional harmonic oscillator 1s 1n
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at temperature 7. The average total energy of the

oscillator 1s

(A) L kT
2

(B) kT

© > kT

(D) 3kT

(E) 6kT



48. A gaseous mixture of O, (molecular mass 32 u) GREO177

and N, (molecular mass 28 u) 1s maintained at

Vims (NZ )
Vyims (02 )
of the root-mean-square speeds of the molecules?

constant temperature. What 1s the ratio

(A) «
®) 4
©) >
o (8]

(E) h(%)



48. A gaseous mixture of O, (molecular mass 32 u) GREO177

and N, (molecular mass 28 u) 1s maintained at

Vims (NZ )
Vyims (02 )
of the root-mean-square speeds of the molecules?

constant temperature. What 1s the ratio

(A) «

®) 4
©) {5
o (5]

(E) h(%)



Avagadro number N = 6 x 10?° (1 mole)
Avagadro number of H atoms weigh 1 gram
Avagadro number of He atoms weigh 4 grams

Molar mass of H= 1gm = mass of H atom times N

Molar mass of He =4 gm = mass of He atom times N

We define kN = R R =28.31 JK ! /mole
1
One degree of freedom  (F) = §kT
1 1
N degrees of freedom (B) = 5]\7 KT = §RT
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9. The root-mean-square speed of molecules in an
1deal gas of molar mass M at temperature 7T 1s

(A) O

B) |-
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Blackbody radiation 1s made of photons Dy »

Fluxt Px
= .
yellow star
~6000 K
40.0 ‘ 700 Wavelength (nm) "
Wien displacement constant W = 2.9 x 10 ° m K
|44 Wien displacement law:
h\ . — Lpeak
2 Double T = double peak E =p>

halve wavelength
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Intensity

o 2 4 6
Wavelength (Uum)

63. The distribution of relative intensity /(1) of
blackbody radiation from a solid object versus
the wavelength A 1s shown 1n the figure above.
If the Wien displacement law constant 1s
2.9 x 103 m*K, what is the approximate

temperature of the object?

(A) 10K
(B) 50K
(C) 250K
(D) 1,500 K

(E) 6,250 K
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Approximations

A

O

For r <1
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2 hv ! kT
_ hv e

65. Einstein’s formula for the molar heat capacity C
of solids 1s given above. At high temperatures, C
approaches which of the following?

(A) O

(B) 3kN, (Z—;)

(C) 3kN,hv
(D) 3kN,
(E) Njhv
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The partition function



The average energy 1s

1
.t —
We write T = 5]

This gives 7 = Ze‘ﬁEi
Z 0B > e P




GREO0177
98. Suppose that a system in quantum state i

has energy E;. In thermal equilibrium, the
expression

2 Eie—Ei/kT
i
—E; 1kT
D e
i

represents which of the following?

(A) The average energy of the system

(B) The partition function

(C) Unity

(D) The probability to find the system with
energy E;

(E) The entropy of the system



GREO0177
98. Suppose that a system in quantum state i

has energy E;. In thermal equilibrium, the
expression

2 Eie—Ei/kT
i
—E; 1kT
D e
i

represents which of the following?

¢A) The average energy of the system

(B) The partition function

(C) Unity

(D) The probability to find the system with
energy E;

(E) The entropy of the system



| GRE0177
49. In a Maxwell-Boltzmann system with two states

of energies € and 2¢€, respectively, and a
degeneracy of 2 for each state, the partition
function 1s

(A) e—e/kT

(B) 26—26/kT

(C) 26—36/kT

(D) e—e/kT + e—ZE/kT

(E) 2[e—elkT + e—26/kT]
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An unusual situation



GREO177
76. The mean kinetic energy of the conduction

electrons 1n metals 1s ordinarily much higher
than kT because

(A) electrons have many more degrees of
freedom than atoms do

(B) the electrons and the lattice are not 1n thermal
equilibrium

(C) the electrons form a degenerate Fermi gas

(D) electrons in metals are highly relativistic

(E) electrons interact strongly with phonons
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electrons 1n metals 1s ordinarily much higher
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(A) electrons have many more degrees of
freedom than atoms do
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E ~ kT

Dz




Deriving (F) = %kT



First consider the 1-dimensional problem

Adding over all possibilities :



First consider the 1-dimensional problem




Hot bath,
temperature 1’

D X e_%
]_ 1 _m’U2 _Kac2
) D— _mU2_|_ ~ K2 P X e 2kT @ 2kT
2
©.@)
Adding over all possibilities of velocity : / dv
— OO
©.@)

Adding over all possibilities of position : / dx

— OO



Hot bath,
temperature 1’

N

K B

]_ 1 _gl’UT _12(':13T
E:§mv2+§K$2 pxe 2k k

Adding over all probabilities

//dvdgj e ngUT e I2<kwT (/ de e glva > (/ daj e 12<k:c




Hot bath,
temperature 1’

\ va K'ac2

K
E 1 2 i 1K 2
— —mu -
> o
<1 2y [ dv das(%va e_%‘)ﬂ% e N
—muc) =
2 [ dvdx e~ o e~ S
- dv (5mv? o~ Bir | do e~ 5
f dve” ik f dr e Ko
1
= — kT



Hot bath,
temperature 1’

\ va K:B2

1 1 1
E = §mf02 -+ §K$2
1 5 1 5 1 1
— — K = kT + -KkT = kT
<2mv )+ <2 ) 5 + :



