
1. Geodesics

We have seen that if we have a vector V i at one point x then we van construct a

vector at a neighbouring point x + dx such that the new vector is the ‘same’ as the vector

at the original point. This is called ‘parallel transporting’ the vector from x to x + dx.

The change in the components of the vector was

δV i = −Γi
jkV jδxk (1.1)

Now suppose that we wanted to ask if a given curve was a ‘straight line’ on the manifold.

Let us start with one point P on the curve, proceed in a given direction along the curve,

and denote the distance along the curve from P by the symbol s. The vector

V i(x) =
dxi

ds
(x) (1.2)

is obviously tangent to the curve at the point x. We also see that

V iVi =
dxidxi

ds2
= 1 (1.3)

so V i is a unit vector. We ‘parallel transport’ this vector to another point on the curve

at x + dx, and ask: is the transported vector equal to tangent vector that was already

defined at the point x + dx through (1.2)? Clearly, if it is not, then the curve cannot be

called ‘straight’. If it is, then we can imagine that we have looked at a small patch around

the point x, put coordinates on it that look locally Cartesian, and then transprted the

vector to x + dx as if we were keeping the components of the vector constant in Cartesian

coordinates. Thus to have a ‘straight line’ we need

V i(x + dx) = V i(x) + δV i = V i(x) − Γi
jk(x)V j(x)δxk (1.4)

We can rewrite this as

V i(x + dx) − V i(x)

ds
= −Γi

jk(x)V i(x)
δxk

ds
(1.5)

or
dV i

ds
+ Γi

jkV jV k = 0 (1.6)

If the tangent V defined for a curve satisfies this equation then that curve is a ‘straight

line’ on the manifold and is called a geodesic.
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There is one possibility that we did not discuss above: what happens if the vector V i

transported to x + dx happens to be parallel to the tangent at x + dx, but is not of unit

length after the transport? Will we call the curve a geodesic in that case?

In fact we can easily see that this will not happen. Upon parallel transport, a vector

may change its components but will not change its length:

δ(V iV jgij) = 2(δV i)V jgij + V iV jδgij = −2Γi
mnV mδxnV jgij + V iV jgij,nδxn

= −gik[gkm,n + gkn,m − gmn,k]gijV
mV jδxn + V iV jgij,nδxn

= −[gjm,n + gjn,m − gmn,j]V
mV jδxn + V iV jgij,nδxn

= 0

(1.7)

where in the last but one step we observed that two of the terms in the box bracket

cancelled since taken together they were antisymmetric in m, j while the quantity V mV j

was symmetric.

In fact, more generally, we see that the inner product between two vectors will also

not change under parallel transport:

δ(V iW jgij) = (δV i)W jgij + V i(δW j)gij + V iW jδgij

= −Γi
mnV mδxnW jgij − Γj

mnWmδxnV igij + V iW jgij,nδxn

= −

1

2
gik[gkm,n + gkn,m − gmn,k]gijV

mW jδxn

−

1

2
gjk[gkm,n + gkn,m − gmn,k]gijW

mV iδxn + V iW jgij,nδxn

= −

1

2
[gjm,n + gjn,m − gmn,j](V

mW j + V jWm)δxn + V iW jgij,nδxn

= 0

(1.8)

2. Covariant derivative

Recall that the motivation for defining a connection was that we should be able to

compare vectors at two neighbouring points. Suppose we are given a vector field - that

is, a vector V i(x) at each point x. Then we can compute the derivative of this vector

field. Thus we take two points, with coordinates xi and xi + δxi. The vector at x has

components V i(x). The vector at x + dx has components

V i(x + δx) = V i(x) +
∂V i

∂xk
δxk (2.1)
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To compare this latter vector with the vector at x we transport the vector at x also to the

point x + dx. This transported vector has components

V i(x) − Γi
jk(x)V j(x)δxk (2.2)

Thus the ‘true’ change in the vector between x and x + dx is

∂V i

∂xk
δxk + Γi

jk(x)V j(x)δxk = [
∂V i

∂xj
+ Γi

jk(x)V j(x)]δxk (2.3)

Thus we may define a ‘true’ derivative, called the covariant derivative by

V i
;k ≡

∂V i(x)

∂xj
+ Γi

jk(x)V j(x) (2.4)

the first term takes into account the fact that the components of V are changing, while the

second removes the part of this change that is simply due to the fact that the coordinates

themselves are changing.

How do we find the covariant derivative of a covariant vector Wi? One way is to redrive

the connection for a covariant vector just the way we did for a contravariant vector, by

starting with flat space where transport is trivial, and changing to curvilinear coordinates.

But we can instead use the fact that we found above in (1.8), namely that the dot product

between two contrvariant vectors is unchanged by parallel transport:

0 = δ(V iW jgij) = δ(V iWi) = (δV i)Wi + V i(δWi) = −Γi
klV

kδxlWi + V i(δWi) (2.5)

Since this relation must hold true for all possible V i, we can set to zero the coefficient of

V k for each k in the above equation:

δWk = Γi
klWiδx

l (2.6)

Thus the connection is related to that involved in transporting the contravariant vector,

but note that the overall sign is different, and that the contraction of indices is different.

The notation of up and down indices for contravariant and covariant vectors helps us to

keep track of how the indices should be contracted here. Recall however that though

V i and Wi are vectors, Γi
jk does not transform like a tensor, so the index structure is a

pnemonic and not a tensor index contraction.
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We can now define a covariant derivative for covariant vectors, by following the same

chain of reasoning that we followed for contravariant vectors. We find

Wi;k ≡

∂Wi

∂xk
− Γl

ikWl (2.7)

Let us now compute the covariant derivative of the metric tensor:

gij;k = gij,k − Γl
ikglj − Γl

jkgil

= gij,k −

1

2
glm[gmi,k + gmk,i − gik,m]glj −

1

2
glm[gmj,k + gmk,j − gjk,m]gli

= gij,k −

1

2
[gji,k + gjk,i − gik,j ] −

1

2
[gij,k + gik,j − gjk,i]

= 0

(2.8)

This fact is very significant, since we find

Vi;k = (V igij);k = V i
;kgij + V igij;k = V i

;kgij (2.9)

Thus we can covariantly differentiate a contravarant vector, and then lower the contravari-

ant index, or lower the index first and then compute the covariant derivative - in either case

we will get the same answer. thus the operation of raising and lowering indices commutes

with the operation of taking a covariant derivative. This fact will substantially reduce the

kinds of geometric objects that we can make by starting with a given tensor and taking

covariant derivatives.

3. 4-velocity

In Newtonian mechanics velocity is a vector with three space components: dxi

dt
, i =

1, 2, 3. But with special relativity we needed to treat time on the same footing as space. In

this case what shall we use as the denominator in the expression for the velocity? Along

the world line of a particle, if we take to infinitesimally separated points, then a coordinate

independent quantity is the ‘proper distance’ ds between the points:

ds2 = dt2 − dx2
1 − dx2

2 − dx2
3 (3.1)

The components of 4-velocity (called 4-velocity since it has four components) are defined

as

U0 =
dt

ds
, U1 =

dx1

ds
U2 =

dx2

ds
U3 =

dx3

ds
(3.2)
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If the particle is moving slowly, then dx/dt << 1, and

ds = dt[1 − (
d~x

dt
)2]1/2 = dt + O(~v2) (3.3)

Thus in the limit where we expect Newtonian physics to be valid, we get

U0
≈ 1, U1

≈ v1, U2
≈ v2, U3

≈ v3 (3.4)

and the four velocity U has the same data as the usual velocity ~v. In curvilinear coordinates

on flat space and more generally in curved spacetime, we will similarily have

ds2 = gij(x)dxidxj (3.5)

where at each point x the metric gij represents one timelike and three spacelike directions.

The 4-velocity is

U i =
dxi

ds
(3.6)

We will often call the 4-velocity just the velocity.

We observe that

U iUi =
dt2 − (d~x)2

ds2
= 1 (3.7)

Thus U is a timelike 4-vector. We can see that it is a vector of contravariant type, since it

is defined through the separation between two points on spacetime. Thus U has its index

written ‘up’.

4. Raising and lowering indices

Suppose we have a contravariant vector V i at some point x of the manifold, and a

covariant vector Wi at the same point. Let us form the object

f = V iWi (4.1)

If we transform to new coordinates we see that

f ′ = V ′iW ′

i =
∂ξi

∂xm

∂xn

ξi
V mWn = δn

mV mWn = V mWm = f (4.2)

thus f transforms as a function (which we also called a scalar); it has no free indices,

and we see that when indices are ‘contracted’ in the above fashion then we do not need
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to worry about the transformations that act on such indices - the transformations cancel

each other out. If V, W were vector fields, we would obtain a function f(x) over spacetime

b carrying out the contraction (4.1) at each point.

We had seen that the metric tensor had two covariant indices. Let us start with a

contravariant vector V i and form the contraction

gijV
j (4.3)

It is easy to check that this transforms to a new coordinate frame as

(g′

ijV
′j) =

∂xm

∂ξi

∂xn

ξj

∂ξj

∂xp
gmnV p =

∂xm

∂ξi
δn
p gmnV p =

∂xm

∂ξi
(gmpV

p) (4.4)

Thus again only the free index participates in the transformation law, but the transfor-

mation law of the quantity (4.4) is that of a covariant vector; the two lower indices of the

metric and one upper index of V have resulted in an object with one lower index. We

denote this object by the same symbol V , but with a lower index:

Vi ≡ gijV
j (4.5)

The fact that we use the symbol V still is justified because if we assume that we are given

the metric, then the information in V i is contained in the information in Vi and vice versa:

we can get

gijVj = gijgjkV k = δi
kV k = V i (4.6)

which converts a covariant vector Vi to a contravariant. vector. Thus the metric and the

inverse metric can be used to raise and lower indices on vectors.

5. The Newtonian limit

With this formalism of geodesics on curved manifolds we should be able to reproduce

in some limit the law of Gravitation in Newton’s theory. The key difference between general

relativity and Newtonian mechanics is of course the fact that the latter is not relativistic;

thus we should look for a limit where all particle velocities are low compared to the speed

of light, or with c = 1, small compared to unity. Thus ~v will be the small parameter in

our approximation.
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Consider the geodescic equation (1.6). Note that for i = 1, 2, 3

dU i

ds
=

d

ds

dxi

ds
≈

d2xi

dt2
(5.1)

Further,

U0
≈ 1, U i << 1, i = 1, 2, 3 (5.2)

Thus we get
d2xi

dt2
≈ −Γi

00 (5.3)

Now we assume that the spacetime is nearly flat, so that the metric is

gij = ηij + hij , hij << 1 (5.4)

We also assume that the metric is static, so that no component depends on the coordinate

x0 = t. Then

Γi
00 = −

1

2
g00,i = −

1

2
h00,i, i = 1, 2, 3 (5.5)

and the geodesic equation becomes

d2xi

dt2
≈

1

2
h00,i, i = 1, 2, 3 (5.6)

We should compare this to the equation expected from Newton’s theory

d2xi

dt2
= −φ,i (5.7)

where φ is the gravitational potential. Thus we see that we need to identify

h00 ≈ −2φ (5.8)

For a point mass source M we have

φ = −

GM

r
(5.9)

Thus the metric must have

g00 ≈ (1 −

2GM

r
) (5.10)

Indeed, the exact metric for a point mass source is the Schwarzschild metric

ds2 = (1 −

2GM

r
)dt2 −

dr2

1 −
2GM

r

+ r2(dθ2 + sin2 θdφ2) (5.11)
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Let us compute the period of circular orbits in this metric. Let the orbit have radius

r0. Then

d2r

ds2
=

d

ds

dr

ds
=

dUr

ds
= 0 (5.12)

But by the geodesic equation,
dUr

ds
= −Γr

ijU
iU j (5.13)

But the only components of the 4-velocity that are nonvanising are Uθ = dθ
ds , U0 = dt

ds ,

since only the coordinates θ, t change along the orbit. Thus we find

0 = Γr
θθU

θUθ + Γr
00U

0U0 + 2Γr
rθU

θU0 (5.14)

We have

Γr
θ0 = 0, Γr

θθ = −(1 −

2GM

r
)r, Γr

00 = (1 −

2GM

r
)
GM

r2
(5.15)

From the geodesic equation we find

Uθ

U0
=

dθ

dt
= (

GM

r3
)1/2 (5.16)

Thus the period of an orbit of radius r0 is

T = 2π(
r3
0

GM
)1/2 (5.17)

In Newtonian gravity we would find the angular velocity by equating the centripetal

acceleration to the gravitational force

(
dθ

dt
)2r =

GM

r2
(5.18)

which also gives the time period (5.17). While for large r where the metric is close to

the flat one and the particle velocity in circular orbits is slow we would expect the time

periods to be approximately the same between the general relativistic treatment and the

Newtonian treatment, we see here that by a coincidence the expressions are in fact identical

for all r. However as we will see now this does not mean that we can have such circular

orbits for all r in the relativistic theory, unlike the case for the Newtonian theory.
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6. Gravitational redshift

Suppose we have a person who stays at a fixed radius r > 2M in the spacetime with

metric (5.11). Let this person emit some periodic signal - for example it might be a light

wave with a frequency ν, or he may just spray bullets from a gun at a fixed interval. We

assume that in his own frame these periodic events have a time separation ∆T . Let the

light wave or the sequence of bullets reaches a person standing fixed at some other point,

say at r′ > 2M . What will be the percieved interval between the periodic events for the

person at r′?

We assume that when the person at r says that the events have a separation ∆T then

he means that the proper time along his world line between two successive events is ∆T .

Thus

ds = (1 −

2GM

r
)1/2∆t = ∆T (6.1)

Since the spacetime is static, the intervals between the events at r′ will be fixed in the

sense that they will occur at the same separations ∆t. But this gives for the proper time

along the worldline of the observer at r′

ds′ = (1 −

2GM

r′
)1/2∆t = (

1 −
2GM

r′

1 −
2GM

r

)1/2∆T (6.2)

Thus the frequency of a light wave would appear to be lower that the one emitted to

an observer who sits at a radius r′ > r. This effect is called gravitational redshift. It is

somewhat different from the doppler shift that we encounter in studying sound waves r

light waves. If we move at a velocity v compared to the source emitting a sound wave,

then the fractional change in the frequency of the sound wave will be appriciable if we

move with a speed that is of the order of the sound speed. but this same speed would give

a very small fractional change for the frequency of light waves: to get a significant chage

for light we would have to move with a speed comparale to the speed of light. But the

gravitational redshift that we discussed changes the frequency of any motion by the same

proportionality factor, once we fix the positions r and r′. Thus gravitational redshift is a

property of the curved spacetime itself, and is a central feature of general relativity.
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7. Curvature

Let us take the second derivative of the vector field that we had above. Then we get

an expression

[V a
;c];d ≡ V a

;cd (7.1)

If we had been computing ordinary partial derivatives of the components V a with respect

to the coordinates ξb, ξc then these partial derivatives would commute

∂2V a

∂ξc∂ξd
=

∂2V a

∂ξd∂ξc
(7.2)

But the covariant derivatives in fact do not commute in general. We have

V a
;c = V a

,c + Γa
cfV f (7.3)

V a
;c is a tensor with one contravariant index and one covariant index. So we have

V a
;cd = [V a

,c + Γa
cfV f ],d + Γa

df V f
;c − Γf

cdV
a
;f

= V a
,cd + Γa

cf,dV
f + Γa

cfV f
,d + Γa

df V f
;c − Γf

cdV
a
;f

(7.4)

As written, the above expression has both ordinary partial derivatives of V as well as some

covariant derivatives of V . We could convert them all to ordinary partial derivatives plus

some connection terms, but what we want to do is to compare the above expression with

the two covariant derivatives taken in the reverse order. Thus we have

V a
;dc = V a

,dc + Γa
df,cV

f + Γa
dfV f

,c + Γa
cfV f

;d − Γf
dcV

a
;f (7.5)

If we take the difference of the above two relations, we will find by (7.2) that the first

terms on the RHS will cancel. The last terms on the RHS cancel as well, since Γa
cd = Γa

dc.

There are two terms left in each expression with first order derivatives of V , but of these

one term is a partial derivative while the other is a covariant derivative. Expanding the

covariant derivative involved here, we get

V a
;cd − V a

;dc = Γa
cf,dV

f
− Γa

df,cV
f + Γa

dgΓ
g
fcV

f
− Γa

cgΓ
g
fdV

f

= [Γa
cf,d − Γa

df,c + Γa
dgΓg

fc − Γa
cgΓ

g
fd]V

f

≡ −Ra
fcdV

f

(7.6)

Note the remarkable fact that even though the second order covariant partial derivatives

of V do not commute, the difference between the derivatives taken in the two different
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orders is an expression that involves only V and not any of its derivatives. The effect of

the noncommutation has been summarised in the Riemann curvature tensor

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

cfΓf
bd − Γa

df Γf
bc (7.7)

It is not evident from the expression above that this quantity should be a tensor, since it

involves the connection, which is not itself a tensor, and further there are ordinary partial

derivatives of this connection. But let us consider geometrically what Ra
bcd signifies. In

the above calculation we had assumed that V was a vector field, i.e. a vector at each

point of the space. But as we saw the final expression defining the curvature through (7.6)

did not involve any derivatives of V , so we did not really need to know how the vector

field changed from point to point, which suggests that we should be able to define Ra
bcd

using only a vector that is assumed to exist at one point x (where we wish to define the

tensor). Thus take a vector V a at x, and parallet transport it to a point x + δx. then the

components of the transported vector will be

V a
− Γa

fc(x)V fδxc (7.8)

where we have written explicitly the fact that the connection is evaluated at x. Now we

transport this vector further to a point x + δx + δ̃x. Then the components of the vector

will be

[V a
− Γa

fc(x)V fδxc] − Γa
gd(x + δx)[V g

− Γg
fc(x)V fδxc]δ̃xd

= [V a
− Γa

fc(x)V fδxc] − [Γa
gd(x) + Γa

gd,kδxk][V g
− Γg

fc(x)V fδxc]δ̃xd
(7.9)

Now suppose we had done the transports in the other order - first moved the vector to

x + δ̃x and then to x + δ̃x + δx which is the same point as the one reached before. then

we would get

[V a
− Γa

fd(x)V f δ̃xd] − Γa
gc(x + δ̃x)[V g

− Γg
fd(x)V f δ̃xd]δxc

= [V a
− Γa

fd(x)V f δ̃xd] − [Γa
gc(x) + Γa

gc,kδ̃xk][V g
− Γg

fd(x)V f δ̃xd]δxc
(7.10)

Subtracting (7.10) from (7.10) we get for the difference of the change in V between the

two paths

[−Γa
bd,c + Γa

bc,d + Γa
dfΓr

bc − Γa
cfΓr

bd]V
bδxcδx̃d = −Ra

bcdV
bδxcδx̃d (7.11)

So we see that curvature describes the difference in parallel transport along different paths.
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