1 The virial theorem

Consider a collection of particles with masses $m_{i}, i=1,2, \ldots N$. Let the complete system be in a 'steady state', where the individual particles move around but the overall description of the system does not change qualitatively; i.e., its macroscopic parameters remain within certain bounds. Then we can obtain a relation between the kinetic and potential energies of the system.

The equations of motion for the i th particle are

$$
\begin{equation*}
\dot{p}_{i}=F_{i} \tag{1}
\end{equation*}
$$

Write

$$
\begin{equation*}
G=\sum_{i} p_{i} \cdot r_{i} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\dot{G}=\sum_{i} \dot{p}_{i} \cdot r_{i}+\sum_{i} p_{i} \cdot v_{i}=\sum_{i} F_{i} \cdot r_{i}+2 T \tag{3}
\end{equation*}
$$

Let us compute the time average of each quantity over time τ. The time average of a quantity Q is given by

$$
\begin{equation*}
\bar{Q}=\frac{1}{\tau} \int_{t=0}^{\tau} d t Q(t) \tag{4}
\end{equation*}
$$

Computing these time averages we find

$$
\begin{equation*}
\frac{1}{\tau} \int_{0}^{\tau} \dot{G} d t=\overline{2 T}+\overline{\sum_{i} F_{i} \cdot r_{i}} \tag{5}
\end{equation*}
$$

In a steady state, the difference $G(\tau)-G(0)$ will remain finite, so if we take the large τ limit we will get

$$
\begin{equation*}
\frac{1}{\tau} \int_{0}^{\tau} \dot{G} d t=\frac{1}{\tau}[G(\tau)-G(0)] \rightarrow 0 \tag{6}
\end{equation*}
$$

So we find that in steady state

$$
\begin{equation*}
\bar{T}=-\frac{1}{2} \overline{\sum_{i} F_{i} \cdot r_{i}} \tag{7}
\end{equation*}
$$

where the time averages are now assumed to be taken with the limit $\tau \rightarrow \infty$.
The RHS of the above equation does not make much physical sense as it stands, but we will now evaluate it for a specific force law. Let us consider a 2-body central force, given by a potential V

$$
\begin{equation*}
V=\frac{1}{2} \sum_{j \neq i} \alpha_{i j}\left(r_{i j}\right)^{n} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right| \tag{9}
\end{equation*}
$$

is the distance between particles i and j. Then the force on the k th particle is obtained by taking the gradient with respect to \vec{r}_{k} (with a negative sign)

$$
\begin{equation*}
\vec{F}_{k}=-\frac{1}{2} \vec{\nabla}_{k} \sum_{j \neq i} \alpha_{i j} r_{i j}^{n} \tag{10}
\end{equation*}
$$

The variable \vec{r}_{k} appears in two ways in the expression above:

$$
\begin{equation*}
\vec{F}_{k}=-\frac{1}{2} \vec{\nabla}_{k} \sum_{j \neq k} \alpha_{k j} r_{k j}^{n}-\frac{1}{2} \vec{\nabla}_{k} \sum_{j \neq k} \alpha_{j k} r_{j k}^{n} \tag{11}
\end{equation*}
$$

We have

$$
\begin{gather*}
\vec{\nabla}_{k} r_{k j}=\vec{\nabla}_{k}\left[\left(\vec{r}_{k}-\vec{r}_{j}\right) \cdot\left(\vec{r}_{k}-\vec{r}_{j}\right)\right]^{\frac{1}{2}}=\frac{1}{r_{k j}}\left(\vec{r}_{k}-\vec{r}_{j}\right) \tag{12}\\
\vec{\nabla}_{k} r_{j k}=\vec{\nabla}_{k}\left[\left(\vec{r}_{j}-\vec{r}_{k}\right) \cdot\left(\vec{r}_{j}-\vec{r}_{k}\right)\right]^{\frac{1}{2}}=-\frac{1}{r_{j k}}\left(\vec{r}_{j}-\vec{r}_{k}\right)=\frac{1}{r_{k j}}\left(\vec{r}_{k}-\vec{r}_{j}\right) \tag{13}
\end{gather*}
$$

So we get

$$
\begin{equation*}
\vec{F}_{k}=-\sum_{j \neq k} \alpha_{k j} n r_{k j}^{n-1} \frac{1}{r_{k j}}\left(\vec{r}_{k}-\vec{r}_{j}\right) \tag{14}
\end{equation*}
$$

Now we compute our quantity of interest

$$
\begin{equation*}
\sum_{k} \vec{F}_{k} \cdot \vec{r}_{k}=-\sum_{j \neq k} \alpha_{k j} n r_{k j}^{n-1} \frac{1}{r_{k j}}\left(\vec{r}_{k}-\vec{r}_{j}\right) \cdot \vec{r}_{k} \tag{15}
\end{equation*}
$$

Note that $\alpha_{j k}=\alpha_{k j}$, and $r_{j k}=r_{k j}$. Interchanging the dummy labels j, k we can also write

$$
\begin{equation*}
\sum_{k} \vec{F}_{k} \cdot \vec{r}_{k}=-\sum_{j \neq k} \alpha_{k j} n r_{k j}^{n-1} \frac{1}{r_{k j}}\left(\vec{r}_{j}-\vec{r}_{k}\right) \cdot \vec{r}_{j} \tag{16}
\end{equation*}
$$

Adding the above two expressions for $\sum_{k} \vec{F}_{k} \cdot \vec{r}_{k}$ and dividing by 2 , we get

$$
\begin{equation*}
\sum_{k} \vec{F}_{k} \cdot \vec{r}_{k}=-\frac{1}{2} \sum_{j \neq k} \alpha_{k j} n r_{k j}^{n-1} \frac{1}{r_{k j}}\left(\vec{r}_{k}-\vec{r}_{j}\right) \cdot\left(\vec{r}_{k}-\vec{r}_{j}\right)=-\frac{1}{2} \sum_{k \neq j} \alpha_{k j} n r_{k j}^{n}=-n V \tag{17}
\end{equation*}
$$

Thus we have found that

$$
\begin{equation*}
\bar{T}=-\frac{1}{2} \sum_{k} \vec{F}_{k} \cdot \vec{r}_{k}=\frac{n}{2} \bar{V} \tag{18}
\end{equation*}
$$

For the Kepler potential we have $n=-1$ and we get

$$
\begin{equation*}
\bar{T}=-\frac{1}{2} \bar{V} \tag{19}
\end{equation*}
$$

