Physics 7502 Quantum Mechanics Spring 2019

Midterm 2

Given: Friday, March 29, 2019 Time: 55 minutes Total marks: 30

Problem 1: (15 points) A particle of mass m and charge q moves in the $x-y$ plane in the uniform magnetic field $\vec{B}=B \hat{z}$. The sample has length L_{1} in the x direction and length L_{2} in the y direction. You can assume periodic boundary conditions in each direction.
(i) Write down the Hamiltonian describing the particle, using the gauge $A_{x}=-B y$. (5 points)
(ii) Using a suitable ansatz for the wavefunction, show that the Schrodinger equation for this system can be reduced to a harmonic oscillator, and find the frequency of this harmonic oscillator. (5 points)
(iii) Derive the number of states in each Landau level. (5 points).

Problem 2: (15 points) A harmonic oscillator has the Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2}(t) \hat{x}^{2} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega^{2}(t)=\omega_{0}^{2}+\lambda e^{-\frac{t^{2}}{\tau^{2}}} \tag{2}
\end{equation*}
$$

and λ small. The oscillator starts in the ground state $|0\rangle$ at $t \rightarrow-\infty$. What is the probability that it is in the second excited state $|2\rangle$ at $t \rightarrow \infty$?
[You can use that the creation and annihilation operators are given by

$$
\begin{align*}
& A=\sqrt{\frac{m \omega}{2 \hbar}} x+i \frac{1}{\sqrt{2 m \omega \hbar}} p \tag{3}\\
& A^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} x-i \frac{1}{\sqrt{2 m \omega \hbar}} p \tag{4}
\end{align*}
$$

and the integral of a gaussian is

$$
\begin{equation*}
\int_{z=-\infty}^{\infty} d z e^{-a z^{2}+b z}=\sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4 a}} \tag{5}
\end{equation*}
$$

Solution: (1) (i) In the gauge

$$
\begin{equation*}
\vec{A}=-B y \hat{x} \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
A_{x}=-B y, \quad A_{y}=0, \quad A_{z}=0 \tag{7}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}=\frac{1}{2 m}\left(\left(p_{x}+q B y\right)^{2}+p_{y}^{2}\right)=\frac{1}{2 m}\left(p_{x}^{2}+2 q B p_{x} y+q^{2} B^{2} y^{2}+p_{y}^{2}\right) \tag{8}
\end{equation*}
$$

(ii) We take

$$
\begin{gather*}
\psi=e^{i k x} \psi(y) \tag{9}\\
H \psi=\frac{1}{2 m}\left(\hbar^{2} k^{2}+2 q B \hbar k y+q^{2} B^{2} y^{2}+p_{y}^{2}\right)=\frac{1}{2 m}\left(p_{y}^{2}+q^{2} B^{2}\left(y+\frac{\hbar k}{q B}\right)^{2}\right) \tag{10}
\end{gather*}
$$

This is a harmonic oscillator, with

$$
\begin{equation*}
\frac{1}{2} m \omega^{2}=\frac{1}{2 m} q^{2} B^{2}, \quad \omega=\frac{e B}{m} \tag{11}
\end{equation*}
$$

Thus the energy levels are

$$
\begin{equation*}
\left(n+\frac{1}{2}\right) \hbar \omega \tag{12}
\end{equation*}
$$

Note that k is arbitrary, so the levels are highly degenerate.
(iii) We have a strip of length L_{1} in the x direction. Then

$$
\begin{equation*}
k=\frac{2 \pi n}{L_{1}} \tag{13}
\end{equation*}
$$

Thus the y locations, for a given value of the excitation of the harmonic oscillator, are

$$
\begin{equation*}
y_{n}=-\frac{\hbar k}{q B}=-\frac{2 \pi \hbar n^{*}}{L_{1} q B} \tag{14}
\end{equation*}
$$

This has the range $0 \leq y \leq L_{2}$. Thus

$$
\begin{equation*}
\frac{2 \pi \hbar\left|n_{\max }^{*}\right|}{L_{1} q B}=L_{2} \tag{15}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left|n_{\max }^{*}\right|=\frac{q B L_{1} L_{2}}{2 \pi \hbar}=\frac{q B L_{1} L_{2}}{h} \tag{16}
\end{equation*}
$$

This is the number of states per Landau level.

Solution: (2) We have

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2}(t) \hat{x}^{2}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2}+\frac{1}{2} m \lambda q(t) \hat{x}^{2} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
q(t)=e^{-\frac{t^{2}}{\tau^{2}}} \tag{18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
V(t)=\frac{1}{2} m q(t) \hat{x}^{2} \tag{19}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|\phi_{k}\right\rangle=\frac{1}{\sqrt{k!}}\left(\hat{A}^{\dagger}\right)^{k}|0\rangle \tag{20}
\end{equation*}
$$

We also have

$$
\begin{align*}
A & =\sqrt{\frac{m \omega_{0}}{2 \hbar}} x+i \frac{1}{\sqrt{2 m \omega_{0} \hbar}} p \tag{21}\\
A^{\dagger} & =\sqrt{\frac{m \omega_{0}}{2 \hbar}} x-i \frac{1}{\sqrt{2 m \omega_{0} \hbar}} p \tag{22}
\end{align*}
$$

Thus

$$
\begin{align*}
& \hat{x}=\sqrt{\frac{\hbar}{2 m \omega_{0}}}\left(\hat{A}+\hat{A}^{\dagger}\right) \tag{23}\\
& \hat{x}^{2}=\frac{\hbar}{2 m \omega_{0}}\left(\hat{A}+\hat{A}^{\dagger}\right)^{2} \tag{24}
\end{align*}
$$

Thus

$$
\begin{equation*}
V(t)=\frac{1}{2} m q(t) \frac{\hbar}{2 m \omega_{0}}\left(\hat{A}+\hat{A}^{\dagger}\right)^{2}=q(t) \frac{\hbar}{4 \omega_{0}}\left(\hat{A}+\hat{A}^{\dagger}\right)^{2} \tag{25}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
\left\langle\phi_{l}\right| V(t)\left|\phi_{k}\right\rangle=q(t) \frac{\hbar}{4 \omega_{0}} \frac{1}{\sqrt{l!}} \frac{1}{\sqrt{k!}}\langle 0| \hat{A}^{l}\left(\hat{A}+\hat{A}^{\dagger}\right)^{2}\left(\hat{A}^{\dagger}\right)^{k}|0\rangle \tag{26}
\end{equation*}
$$

We set

$$
\begin{equation*}
\left|\phi_{k}\right\rangle=|0\rangle, \quad\left\langle\phi_{l}\right|=\langle 2| \tag{27}
\end{equation*}
$$

and compute

$$
\begin{gather*}
\left\langle\phi_{l}\right| V(t)\left|\phi_{k}\right\rangle=q(t) \frac{\hbar}{4 \omega_{0}} \frac{1}{\sqrt{2}}\langle 0| \hat{A}^{2}\left(\hat{A}+\hat{A}^{\dagger}\right)^{2}|0\rangle \tag{28}\\
=q(t) \frac{\hbar}{4 \omega_{0}} \frac{1}{\sqrt{2}}\langle 0| \hat{A}^{2}\left(\hat{A}^{\dagger}\right)^{2}|0\rangle=2 q(t) \frac{\hbar}{4 \omega_{0}} \frac{1}{\sqrt{2}}=q(t) \frac{\hbar}{2 \omega_{0}} \frac{1}{\sqrt{2}} \tag{29}
\end{gather*}
$$

We have

$$
\begin{equation*}
c_{l}(t)=c_{l}(0)-\frac{i}{\hbar} \lambda \sum_{k} c_{k}(0) \int_{t^{\prime}=-\infty}^{t} d t^{\prime} e^{-i \frac{\left(E_{k}-E_{l}\right)}{\hbar}} t^{\prime}\left\langle\phi_{l}\right| V\left(t^{\prime}\right)\left|\phi_{k}\right\rangle \tag{30}
\end{equation*}
$$

Thus

$$
\begin{gather*}
c_{2}(t)=-\frac{i}{\hbar} \lambda \int_{t^{\prime}=-\infty}^{t} d t^{\prime} e^{i 2 \omega_{0} t^{\prime}} e^{-\frac{t^{\prime 2}}{\tau^{2}}} \frac{\hbar}{2 \omega_{0}} \frac{1}{\sqrt{2}} \tag{31}\\
c_{2}(\infty)=-\frac{i}{2 \omega_{0}} \frac{1}{\sqrt{2}} \lambda \int_{t^{\prime}=-\infty}^{\infty} d t^{\prime} e^{i 2 \omega_{0} t^{\prime}} e^{-\frac{t^{\prime 2}}{\tau^{2}}}=-\frac{i}{2 \omega_{0}} \frac{1}{\sqrt{2}} \lambda \sqrt{\pi} \tau e^{-\frac{4 \omega_{0}^{2} \tau^{2}}{4}} \tag{32}\\
=-\frac{i}{2 \omega_{0}} \frac{1}{\sqrt{2}} \lambda \sqrt{\pi} \tau e^{-\omega_{0}^{2} \tau^{2}} \tag{33}
\end{gather*}
$$

The probability is

$$
\begin{equation*}
P_{2}=\left|c_{2}(\infty)\right|^{2}=\frac{\pi \lambda^{2} \tau^{2}}{8 \omega_{0}^{2}} e^{-2 \omega_{0}^{2} \tau^{2}} \tag{34}
\end{equation*}
$$

