\qquad

Physics 7502 Quantum Mechanics Spring 2019

Midterm 1
Given: Friday, Feb 22, 2019 Time: 55 minutes Total marks: 45

Problem 1: (15 points) A particle has spin $s=\frac{1}{2}$, and an orbital angular momentum $l=1$. The total angular momentum is defined by

$$
\begin{equation*}
\vec{J}=\vec{L}+\vec{S} \tag{1}
\end{equation*}
$$

(i) What are the allowed values of the quantum number j ? You can just give the allowed values of j; you do not have to derive them. (Here j is defined by $J^{2}|\psi\rangle=\hbar^{2} j(j+1)|\psi\rangle$.) (5 points)
(ii) Suppose the Hamiltonian is

$$
\begin{equation*}
\hat{H}=\alpha J^{2}-\beta \vec{L} \cdot \vec{S} \tag{2}
\end{equation*}
$$

Find the eigenvalues of \hat{H}. (10 points)

Problem 2: (15 points) Two particles (called particle 1 and particle 2), each with spin $\frac{1}{2}$, are in a singlet state. What is the probability that the states of the two particles are found to be

$$
\begin{equation*}
|\psi\rangle_{1}=\binom{\frac{3}{5}}{\frac{4}{5}}, \quad|\psi\rangle_{2}=\binom{-\frac{4 i}{5}}{\frac{3 i}{5}} \tag{3}
\end{equation*}
$$

Problem 3: (15 points) Consider a 1-dimensional infinite square well of width a. We place N noninteracting electrons in this well, in the configuration with the lowest allowed energy. Assume that N is even and that each electron has mass m. Find the pressure on each wall.

Solution: (1) (a) We have

$$
\begin{equation*}
j=\frac{3}{2}, \quad j=\frac{1}{2} \tag{4}
\end{equation*}
$$

(b) We have

$$
\begin{gather*}
\vec{L} \cdot \vec{S}=\frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right) \tag{5}\\
\hat{H}=\alpha \hbar^{2} j(j+1)-\frac{1}{2} \beta\left(\hbar^{2}\left(j(j+1)-\hbar^{2} l(l+1)-\hbar^{2} s(s+1)\right)\right. \tag{6}
\end{gather*}
$$

Thus the energies are

$$
\begin{gather*}
j=\frac{3}{2}: \quad E=\hbar^{2}\left(\alpha \frac{3}{2} \frac{5}{2}-\frac{1}{2} \beta\left(\frac{3}{2} \frac{5}{2}-2-\frac{3}{4}\right)=\hbar^{2}\left(\frac{15}{4} \alpha-\frac{1}{2} \beta\right)\right. \tag{7}\\
j=\frac{1}{2}: \quad E=\hbar^{2}\left(\alpha \frac{1}{2} \frac{3}{2}-\frac{1}{2} \beta\left(\frac{1}{2} \frac{3}{2}-2-\frac{3}{4}\right)=\hbar^{2}\left(\frac{3}{4} \alpha+\beta\right)\right. \tag{8}
\end{gather*}
$$

Solution: (2) We have

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2}}\binom{1}{0}_{1}\binom{0}{1}_{2}-\frac{1}{\sqrt{2}}\binom{0}{1}_{1}\binom{1}{0}_{2} \tag{9}
\end{equation*}
$$

We take the inner product with

$$
\begin{equation*}
|\chi\rangle=\binom{\frac{3}{5}}{\frac{4}{5}}\binom{-\frac{4 i}{5}}{\frac{3 i}{5}} \tag{10}
\end{equation*}
$$

We find

$$
\begin{equation*}
\langle\chi \mid \psi\rangle=\frac{1}{\sqrt{2}} \frac{3}{5}\left(-\frac{3 i}{5}\right)-\frac{1}{\sqrt{2}} \frac{4}{5}\left(\frac{4 i}{5}\right)=-\frac{9 i}{25 \sqrt{2}}-\frac{16 i}{25 \sqrt{2}}=-\frac{i}{\sqrt{2}} \tag{11}
\end{equation*}
$$

Thus the probability is

$$
\begin{equation*}
P=|\langle\chi \mid \psi\rangle|^{2}=\frac{1}{2} \tag{12}
\end{equation*}
$$

Solution: (3) Let the well be $0<x<a$. The energy eigenstates are

$$
\begin{equation*}
\left|\psi_{n}\right\rangle=A_{n} \sin \left(k_{n} x\right), \quad k_{n} a=n \pi, \quad k=\frac{n \pi}{a}, \quad n=1,2, \ldots \tag{13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m a^{2}} \tag{14}
\end{equation*}
$$

There are two electrons in each level. Thus we fill all levels to $\frac{N}{2}$. Thus the total energy is

$$
\begin{equation*}
E_{T}=2 \times \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} \sum_{n=1}^{\frac{N}{2}} n^{2}=\frac{\hbar^{2} \pi^{2}}{m a^{2}} \frac{1}{6} \frac{N}{2}\left(\frac{N}{2}+1\right)(N+1) \tag{15}
\end{equation*}
$$

The pressure is

$$
\begin{equation*}
P=-\frac{\partial E_{T}}{\partial a}=\frac{\hbar^{2} \pi^{2}}{3 m a^{3}} \frac{N}{2}\left(\frac{N}{2}+1\right)(N+1) \tag{16}
\end{equation*}
$$

