\qquad

Physics 7502 Quantum Mechanics Spring 2019

Quiz 1
Given: Mon, Jan 14, 2019 Time: 20 minutes

Problem 1: The radial equation for the Hydrogen atom can be reduced to

$$
\begin{equation*}
H^{\prime \prime}(\rho)+\left(\frac{2 l+2}{\rho}-1\right) H^{\prime}(\rho)+\left[\frac{(\lambda-1-l)}{\rho}\right] H(\rho)=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\sqrt{\frac{2 m}{(-E)}} \frac{k}{2 \hbar} \tag{2}
\end{equation*}
$$

(i) Solve this equation by the series method, thus obtaining the energy levels E_{n}. points)
(ii) Using your result, write down $H(\rho)$ for the case $n=3, l=0$. (3 points)
(iii) What is the degeneracy of the level $n=3$? (2 points)

Solution: : (i) We write

$$
\begin{gather*}
H=\sum_{q \geq 0} a_{q} \rho^{q} \tag{3}\\
H^{\prime \prime}+\left(\frac{2 l+2}{\rho}-1\right) H^{\prime}+\left[\frac{(\lambda-1-l)}{\rho}\right] H=0 \tag{4}\\
q(q-1) a_{q} \rho^{q-2}+\left(\frac{2 l+2}{\rho}-1\right) q a_{q} \rho^{q-1}+\left[\frac{(\lambda-1-l)}{\rho}\right] a_{q} \rho^{q}=0 \tag{5}
\end{gather*}
$$

We look at the coefficient of ρ^{q-1}

$$
\begin{gather*}
(q+1) q a_{q+1}+(2 l+2)(q+1) a_{q+1}-q a_{q}+[(\lambda-1-l)] a_{q}=0 \tag{6}\\
(q+1)(q+2 l+2) a_{q+1}=(q-\lambda+1+l) a_{q} \tag{7}\\
a_{q+1}=\frac{(q-\lambda+1+l)}{(q+1)(q+2 l+2)} a_{q} \tag{8}
\end{gather*}
$$

Thus we get

$$
\begin{equation*}
\lambda=l+1+q_{\max }, \quad q_{\max }=0,1,2, \ldots \tag{9}
\end{equation*}
$$

We define

$$
\begin{equation*}
n=l+1+q_{\max } \tag{10}
\end{equation*}
$$

Then

$$
\begin{gather*}
\sqrt{\frac{2 m}{(-E)}} \frac{k}{2 \hbar}=n \tag{11}\\
\frac{2 m}{(-E)} \frac{k^{2}}{4 \hbar^{2}}=n^{2} \tag{12}\\
E=-\frac{m k^{2}}{2 \hbar^{2} n^{2}}=-\frac{m Z^{2} e^{4}}{2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}} \frac{1}{n^{2}} \tag{13}
\end{gather*}
$$

(ii) We have $\lambda=n=3$ and $l=0$. Thus

$$
\begin{equation*}
a_{q+1}=\frac{(q-\lambda+1+l)}{(q+1)(q+2 l+2)} a_{q}=\frac{(q-3+1)}{(q+1)(q+2)} a_{q}=\frac{q-2}{(q+1)(q+2)} a_{q} \tag{14}
\end{equation*}
$$

We set $a_{0}=1$. Then

$$
\begin{gather*}
a_{1}=\frac{(-2)}{2}=-1 \tag{15}\\
a_{2}=\frac{(-1)}{(2)(3)}(-1)=\frac{1}{6} \tag{16}\\
a_{3}=0 \tag{17}
\end{gather*}
$$

Thus

$$
\begin{equation*}
H=1-\rho+\frac{1}{6} \rho^{2} \tag{18}
\end{equation*}
$$

(iii) We have

$$
\begin{equation*}
n=3, \quad l=0,1,2, \quad \rightarrow \quad 1+3+5=9 \tag{19}
\end{equation*}
$$

Thus the degeneracy is 9 .

