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The quantum electrodynamic correction to the equation of state of a plasma at finite temperature is
applied to the areas of solar physics and cosmology. A previously neglected, purely quantum term in the
correction is found to change the equation of state in the solar core by —0.37%, which is roughly es-
timated to decrease the calculated high energy neutrino flux by about 2.2%. We also show that a previ-
ous calculation of the effect of this correction on big bang nucleosynthesis is incomplete, and we estimate
the correction to the primordial helium abundance Y to be AY=1.4X107*. A physical explanation for
the correction is found in terms of corrections to the dispersion relation of the electron, positron, and

photon.

PACS number(s): 96.60.Kx, 95.30.Cq, 98.80.Ft

I. INTRODUCTION

Although there is a well-developed theory regarding
the electromagnetic corrections to the equation of state of
a plasma of charged particles [1-5], the theory has not
been consistently applied to astrophysical environments.
For example, many astrophysical models, such as solar
models [6], use the classical approach to calculating the
electromagnetic correction to the pressure, known as the
Debye-Hiickel theory, which yields a relative correction
of order e3n)’?/T3/%, where n, is the electron number
density [1]. This theory is valid as long as this correction
remains small, or as long as n)’?2<<T3/2/e3. This con-
straint, however, is only marginally held in many of these
astrophysical models, which often have higher densities.

In order to calculate the correction to the pressure at
higher densities, one must use quantum theory. A direct
calculation of the correction using well-established finite
temperature quantum electrodynamics (QED) [2—-4] pro-
duces an expansion series in terms of the parameters
(e,#i,c,n,,T,m). Along with the classical 3 term, this ex-
pansion series includes a purely quantum mechanical
term proportional to e2. For example, in the classical re-
gime, the QED expansion produces a term proportional
to e’n,#*/mT?. Naturally, the size of the e? term de-
pends on the temperature and density, but in many astro-
physical environments this e? term can be comparable to,
and even greater than, the classical e 3 term.

In this paper we will look at a few examples where the
e? term can be an important correction to the equation of
state, and although the corrections are small in absolute
terms, they can still produce observable differences.

It should be noted that in this paper we will be con-
cerned only with the regime where the electromagnetic
interactions can be treated as perturbations to the ideal
plasma behavior. Otherwise the QED expansion series
would not be useful, and another approach would be
needed to find the equation of state [5]. The constraints
on the temperatures and densities of this “weakly in-
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teracting” plasma regime are further discussed at the end
of Sec. II.

The outline of this paper is as follows. In Sec. IT we ex-
amine the general and technical properties of the QED
correction to the equation of state over a wide range of
temperatures and densities. The reader more interested
in specific results for solar physics or cosmology can go
directly to Secs. III or IV, where we have estimated the
effects of the correction in these environments. Finally in
Sec. V, we will examine the finite temperature dispersion
relation of the electrons and photons because the disper-
sion relation is not only necessary for determining the
weak reaction rates, but it is also intimately related to the
QED pressure correction and gives physical insight into
this correction.

II. THE QED CORRECTION

When applying the e’ term to solar physics and
cosmology, we will find that the contribution from the
nuclei is negligible. Therefore we will concentrate only
on the e *-photon plasma.

The first corrections to the pressure (or the free energy)
of the e*-photon plasma due to electromagnetic coupling
are represented as the Feynman diagrams shown in Fig.
1. Many authors have calculated these graphs [2-4], and
we have included the general result for the e? correction

(@ (b)

FIG. 1. The Feynman diagrams for the pressure correction.
(a) represents the e? correction, and (b) is just one of an infinite
sum of loop diagrams which represent the e® term [4]. The
coefficients in front are symmetry factors.
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in Appendix A. For astrophysics, there are two limits
that are of particular interest, namely T >>mc? and
T <<mc?. For T >>mc? or u>>m, the correction to the
pressure (of an ideal plasma) P, , takes the simple form
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Here p is the electron chemical potential, m is the elec-
tron mass, e’/4mfic =a, the fine structure constant, we
define ny=2(mT /2m#*)*/%e*~™/T and we will set the
Boltzman constant kK =1. The lower limit on the temper-
ature and the higher order correction in (2) will be dis-
cussed at the end of this section. We can use the
definition n, =dP /3y and the result of (2) to get an equa-
tion of state of an electron plasma in the classical regime:
en 17 enl?
P,(n,T)=n,T |1— omT? 12277 |- (3)

The approximation sign in (3) is there to remind that we
are neglecting the higher-order terms. Here, one can see
explicitly that the e? term is due to quantum-mechanical
effects, since it includes #, and the e’ term is the familiar
Debye-Hiickel term, which can also be calculated classi-
cally. Both of the corrections in (3) are nonrelativistic
since there is no factor of ¢ in them. Note the interesting
behavior of the e? term in the two limits of equations (1)
and (2): the e? term changes sign, depending on the tem-
perature and density. This change of sign of the QED
correction will also be discussed further in Sec. V.

As shown in Egs. (2) and (3), there are two different
ways to present the results of the correction. The first
way is to keep the chemical-potential constant when turn-
ing on the interaction. Then the total pressure is
P(u, T)=Py(u,T)+ P, (u, T). Figure 2 graphically
shows a summary of the results of the (e? part) of the
correction Py (u,T), which can be calculated generally
by using the formula in Appendix A. Astrophysical envi-
ronments can cover a wide range of this parameter space.
Notice that as the density increases, there is a point at
which the correction flips from positive to negative (at
low T), as seen from curve (d) to (e). This change in sign
at high densities is better shown in Fig. 3, which shows
the correction as a function of chemical potential at zero
temperature. The correction changes sign at a chemical
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FIG. 2. The percent e’ correction to the pressure Py, (g, T),
where the total pressure is P(u,T)=Py(u,T)+ P, (u,T), for
lines of constant (ideal gas) electron charge density
golu, =n¢§ (u, T)—nS+ (1, T). Using lines of constant densi-
ty with the full interacting gas definition of density n =0P /du
would only negligibly change the lines on this graph. P(u,T) is
the total pressure of the e*-photon plasma. The “X” marks
the conditions when neutron (and neutrino) decoupling occurs
in the big bang, and the dot is at the conditions for the solar
core.

potential p_;,~2.7m,c? which corresponds to a density
Mo =9.47X10°° /cm®. At low densities and tempera-
tures the correction can become quite large.

The second way to present the results of the correction,
is to keep the density constant when turning on the in-
teraction. This is a more practical way in the sense that
the total pressure is in the form of an equation of state:
P(n,,T)=Py(n,,T)+P;,(n,,T), where n,=0P /du is the
corrected density. Note that in this notation, P;,(n,,T)
and P, (u,T) are two different functions. To first order
in the correction, they are related by the equation
Pim(ne,T) = Pin[(,—to, T) — (no/ano/aﬂ)apim(,uo, T)/ap,
where n,=0Py(uy,T)/3p and p, is the chemical
potential of the noninteracting gas. This relation now al-

T=0

(W /P(u)x100

P

u(MeV)

FIG. 3. The percent e’ correction to the pressure as a func-
ion of electron chemical potential at 7 =0. Notice that the
:orrection changes sign at a density of about 10*' cm ™2, and at
ow densities, the correction can be quite large because the po-
ential energy per particle is becoming large compared to the
:inetic energy.
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FIG. 4. The percent e? correction to the pressure P, (n,,T),
where the total pressure is P(n,,T)=Py(n,,T)+ P;,(n,,T) (see
text), for lines of constant electron density n,. This graph is
useful for finding the e? correction to the equation of state of a
plasma at nonrelativistic temperatures. The dot is at the condi-
tions for the solar core.

lows us to calculate P, (n,,T) using the formula in Ap-
pendix A. Figure 4 is a graph of P ,(n,,T), and we will
use this graph when applying the correction to the solar
core.

There is one more question about this calculation:
What about higher order terms? This is a very important
question because in the solar core, for example, the e’
term is larger than the e? term! How can we be confident
that the higher-order terms are not larger still? The fol-
lowing arguments will show that as long as the tempera-
ture or density are sufficiently high, all of the higher-
order terms are expected to be at most only ~15% as

large as the e or e? terms.

For the simple case of high temperature, T >>mc?, the
nth-order correction will be of the form V'a"T* to all or-
ders, so it is easy to see that higher-order terms are small.
The same argument goes for u>>mec? For T =0, an
analysis of the correction shows that we must constrain
amc/p;<<1 [where pp is the Fermi momentum,
prc =(u?—m?2c*)'/?], in order for all terms in the expan-
sion to be small. This limit ensures that the average
kinetic energy is much greater than the average potential
energy, so that electromagnetic interactions are small
perturbations. The correction in Fig. 4 blows up because
the potential energy is becoming large compared to the
kinetic energy per particle. As long as amc /pp <<1, or,
in terms of density, as long as n >>(amc /#)%, all higher-
order terms are negligible. This corresponds to a
minimum density 7, >>10% /cm®.

Finally, let us look at the regime mc2—p~T <<mc?,
which is nonrelativistic, slightly degenerate, and relevant
to the solar core (this argument is also valid for
T<<m —p). All of the terms in the expansion of the
correction must meet certain requirements. First, they
must all have powers of e¢ and » in the numerator, since
each bubble in a diagram corresponds to a factor of e?
and n. And since we are in a nonrelativistic regime, none
of the terms can have a factor of ¢ in them. Using these
requirements, and by reformulating the expansion in
terms of dimensionless combinations of the possible pa-

rameters (e,#,c,ny,T,m), one finds that all terms
must be a function of the general form
(e2m 2 /AmHT?)%(no#’ /m3/>T3/2)® where a and b are
integers and @ =b >0 [7]. Strictly speaking, there are
also terms that include the photon density n;, but these
terms have factors of n,, ~T°/m?® in them and so are
neglected. An analysis of this form shows that the next
largest term after the e’n % /4mmT? term (in addition to
the e? term) is e*ny#i/(16m*m /2T>/2) which is smaller by
a factor of (e%/4m)(m /T)'/2. So as long as T >>a’mc?,
all higher-order terms will be negligible. This constraint
is similar to the T =0 constraint above in that it ensures
that the average kinetic energy per particle is much
greater than the average potential energy, and since
a’mc? is the Rydberg energy, it ensures that the plasma
is ionized. For conditions inside the solar core (see Sec.
D), (e*i/4w)m /T)"*~15%, so the largest higher-
order corrections are ~15% as large as the e? or e®
terms. Of course, this analysis does not include the
geometrical factors, which tend to make the higher-order
terms even smaller.

III. APPLICATION TO SOLAR PHYSICS

Perhaps the most exciting application of this correc-
tion is to the solar interior. The solar models now used
[6] all include the classically calculated Debye-Huckel
(DH) term, but they do not include the e? correction in
their equation of state. In this section we will estimate
the effect of the e? correction on the solar-neutrino flux.

Using typical values for the solar core of T=1300 eV
and n, =10%/cm?, and using Fig. 3 [Eq. (3) is a rough ap-
proximation], we find a negative correction to the elec-
tron pressure (here we are calculating the e? term only):

P,(n,,T)—Py(n,,T)
P

e

~—0.0073 . 4)

For simplicity, let us assume that the solar core is only
made up of protons and electrons (even if the core were
50% helium by number, this would only change the final
answer by 25%;. Then the e? term change to the total
pressure is AP{ ™ /P, = —0.0037, because the proton
contribution to the change in the pressure is smaller than
the electron contribution by a factor of m,/m s and can
be neglected.

We can estimate how this correction affects the solar-
neutrino flux by comparing our change in the equation of
state with solar model data in Ref. [6] (Table III), which
calculates neutrino fluxes with and without the DH effect
included in the equation of state [8]. This data shows
that the DH effect decreases the neutrino flux by 0.5 solar
neutrino units (SNU) (6%) for the chlorine experiment,
and 3 SNU (2%) for the gallium experiment. Since the
DH effect decreases the pressure of the solar interior by
about 1% [6], and the e? term decreases the pressure by
0.37%, we estimate the change in the neutrino flux to be

Aflux  _ 0.19 SNU~ —2.20002 for chlorine , (5)
flux

Afux 1.1 SNU~—0.7% for gallium . ()
flux
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Let us restate that these estimates include only the QED
changes to the equation of state for the e term. There is
another QED correction to the classical DH term itself,
and the exact calculation [4] for an electron gas shows
that the DH term is about 15% lower [9] than classically
calculated, and this reduction translates to an additional
AP /P =0.2% or Aflux/flux~0.1 SNU= 1% for chlorine
and Aflux/flux=0.5 SNU=0.4% for gallium. These
corrections are to be added on to (5) and (6).

There is one last issue concerning corrections to the
solar-neutrino flux: Along with corrections to the equa-
tion of state of the solar core, there are also QED correc-
tions to the energy spectrum of the electrons. These
corrections to the electron-energy spectrum will affect the
weak reaction rates in the solar core, and consequently
the neutrino flux. But we will see that the extra correc-
tion to the flux, due to changes in the electron-energy
spectrum, is small.

To show this, we will use the QED dispersion relation
of the electrons to find the change in reaction rates. We
will assume that the QED electron dispersion relation
takes the form E2=pZc’+mic*+8mic* where dm?
is the QED correction to the mass (see Sec. V). All
weak reaction rates R involving electrons (such as
e +Be—Li+v) are roughly proportional to
R~ [*dpo(E)f,(E),  where  o(E)~(m/mg)(a
+bE/m +cE*/m?) is the two particle cross section,
f.(E) is the electron occupation number, and a, b, and c
are constants. It is helpful to reformulate R in terms of
statistical averages of powers of the energy

R~ [d’p(m/my)(a +bE/m +cE*/m?)f (E)
=(m/my)*(a +bE /m +cE*/m*n,

where E"=( [d’pE"f(E))/n,. If we now use the QED
dispersion relation in place of the vacuum dispersion rela-
tion in the expression for R, we find the correction to the

reaction rates
S8R 5 8m? n on,

—_~ =

R 2m2 n

e

The first term in this correction to the reaction rates is
due to the correction to the energy spectrum of the elec-
trons, while the second term is due to the correction in
the number density. We can compare these two terms by
numerical estimation. By using (15) in Appendix B and
by using (4) and approximating &n,/n,~8P,/P,~0.01
for the solar core, we find that &n,/n, >>8m?/m?, for
conditions inside the solar core. That is to say, the
greatest QED correction to reaction rates is due to the
change in the number density of the electrons in the plas-
ma, and the correction due to the change in the energy
spectrum is negligible. The solar code used to obtain (5)
and (6) takes into account the changes in reaction rates
due to corrections in density, but it does not take into ac-
count the changes in reaction rates due to corrections in
the energy spectrum. Since the changes in the reaction
rates due to corrections in the energy spectrum are negli-
gible, to a good approximation (5) and (6) accurately in-
clude the corrections to the reaction rates.

Although the effect of the QED correction on the ex-

pected neutrino flux is small, this estimate shows that the
order of magnitude of this effect is large enough to be in-
cluded in solar codes, where one can determine the full
extent of this effect.

IV. APPLICATION TO COSMOLOGY

The production of elements, such as helium, in the big
bang is very sensitive to the conditions of the Universe at
the time of big bang nucleosynthesis (BBN). Let us first
discuss how finite temperature QED changes these condi-
tions, and then we will estimate how these changes affect
helium production in BBN.

Finite temperature QED changes the conditions in the
early Universe (T >>mc 2,,u) in three ways. First, one
can use Eq. (1) to find that the QED correction reduces
the energy density and pressure in the early Universe at a
given temperature. This can be translated into a decrease
in the number of degrees of freedom of the plasma:

Prot=(N +8Nggp) T*. 7

_T
15%°*
Equation (1) is a good approximation, but the exact e’
term calculation (see Appendix A) and the inclusion of
the e? term in (1) yields 8N =~ —0.006 for T =1-2 MeV.
At this temperature the number of degrees of freedom
N=“Tf which includes photons, e™, and three types of
neutrinos. Therefore,

SN
—~=—0.0011 .
N (8)

Notice that this change in the number of degrees of free-
dom could also be interpreted as changing the fractional
number of dark matter species allowed at the time of
BBN. If we assume they are neutrinos, then the change
in the maximum allowable number of neutrino species is
AN _ =+0.01.

Second, there is a QED correction to the dispersion re-
lation of the electrons. This is discussed later in this sec-
tion and particularly in Sec. V.

Third, as a consequence of the correction to the energy
density of the e*-photon plasma, there are two
modifications to the well-known [11] relation between the
neutrino temperature and the photon temperature
T,=(& )1/3Ty[e5°(me /T, )]'/3. First, there is a change to
the coefficient (%)1/ ? because the energy density before
the et annihilations is decreased by QED corrections
(afterwards, the correction is negligible because n,~0).
That is to say, the photon temperature will be lower than
in the standard relation because there is less total energy
in the plasma to transfer to the photons. Second, we
must make an addition to £(m, /T) which takes into ac-
count the temperature dependent part of the QED
correction. The new relation is

1/2 1/3
T=|—L | 7 || 2 v | De ©)
v L+8N v T, T, ’
where
§” r=15% b (1
¢ (me/ y)_ 2T [pim y) int( y)] ’



and p;,,, P, are the QED density and pressure correc-
tions which can be calculated by using (14) in Appendix
A. Reference [10] estimated the T,-T, relation using the
electron dispersion relation method discussed in the next
paragraph, but their estimate was incomplete. Equation
(10) is the exact relation (assuming the neutrinos com-
pletely decouple at T'>1 MeV), which includes all QED
corrections to the plasma and it includes the change to
the coefficient (£)!/3.

How do these corrections affect BBN? QED correc-
tions have already been applied to BBN in Ref. [10]
(hereafter referred to as Dicus et al.), but they use a
different method which does not include the total QED
change to the energy density. Their approach is to calcu-
late the finite temperature electron dispersion relation
and use this to find the change in the energy density of
the plasma. But one must also include the positron and
photon dispersion relations. For example, the high T
photon dispersion relation [4], #w’=k?%c?+e2T?/6, is
the same order of magnitude correction as the QED elec-
tron dispersion relation, and should be included. Equa-
tion (1) is very useful in that it automatically includes all
QED corrections to the e *-photon plasma without even
dealing with the dispersion relations. Our result of
Ap/p~—1.1X1072 is about two times greater than the
result in Dicus et al. The correct application of the
dispersion relation to the correction in pressure is dis-
cussed in more detail in Sec. V.

The primordial helium abundance Y, which is sensitive
to the neutron fraction at BBN, is affected by QED in
four ways: (a) the change in the electron dispersion rela-
tion (the electron mass) will affect n<>p rates; (b) the
modification of the T,-T, relation [Eq. (10)] affects n<>p
rates; (c) a decrease in the expansion rate (from Ap) will
cause the neutron fraction to freeze-out earlier; (d) the
change in the T,-T, relation will also change the time at
which neutrons are (permanently) captured into deuteri-
um, thus changing how many decay.

We can roughly estimate effects (a)—(c) by using the
same analysis of Dicus et al., only now including the
complete correction to the equation of state. This yields
AY,~0.04mAm /T*~2.9X107% AY,~=0.15AT,/T,
~—0.15(7.3X107%=2.9X10"*)=—0.7X107%  and
AY,~0.1Ap/p=~—1.1X10"% For AY,, we used the
value from Dicus et al., since it does not need any extra
correction. For AY,, the first term for AT, is due to the
change in the coefficient (%)1/ 3 in Eq. (10), and the
second term is the estimate of AT, from Dicus et al.
which does not include changes to the coefficient.

We can estimate AY,; by using the model in Ref. [12]
to find how a small variation in the T,-T, relation
affects the neutron capture time. We find that
AY,;~—0.03Ap/p=~0.3X107*% All in all, the total
effect on BBN is roughly estimated to be

AY,,,=1.4X107%. (10)

The difference from this estimate and Dicus et al.
(AY,~2.4X10~*) is directly traced to the fact that our
calculation includes the complete equation of state, and
that we include AY,. In comparison with the observa-
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tional accuracy of AY =~ 1073, this correction is small, but
the QED corrections obtained by Dicus et al. are already
included in the BBN codes [13], and this reanalysis shows
that the correction must be changed to include the effects
of the entire e *-photon plasma.

One final note is that Eq. (10) also changes the present
relation between the temperature of the photons and neu-
trinos, i.e.,

Tgres=(%+8N)l/3T5res an

because there is less energy to transfer to the photons
when the e annihilate (and the neutrinos have already
decoupled). This increases the present neutrino number
density An.,/n=38N/(11/4)=0.22% per neutrino
species, or on average, the present total neutrino density
is about 1 neutrino/cm? greater.

V. THE DISPERSION RELATION

The only problem with using the diagrams in Fig. 1 to
calculate the QED correction to the pressure is that these
diagrams offer no immediate insight into the physical
processes involved in changing the pressure. There is
another way to calculate the correction by using the finite
temperature dispersion relation of the electrons and pho-
tons, which does give a physically intuitive picture of
these corrections.

The first correction to the electron dispersion relation
is found by calculating the first correction to the electron
propagator, which is represented in Fig. 5(a) [14,15]. As
the caption in Fig. 5 explains, this correction is due to
Compton scattering and e® annihilation and creation in
the plasma. We can find the first correction to the pres-
sure of the gas from this diagram by integrating it over
all momenta p [2]. In effect, this is like joining the two
free ends of the propagator and ““closing the loop,” mak-
ing this diagram equivalent to Fig. 1(a). One must be
very careful, however, to include the symmetry factors
which appear in Fig. 1. The formalism of the electron
propagator approach will give these factors explicitly
[2,17], or one can just put them in by hand, but they must
be included. One must be careful when using this method
to calculate higher order terms: symmetry factors must
be calculated for each term in the expansion. It is com-
mon to use the dispersion relation approach to find the
corrections to “tree” (i.e., nonloop) interactions such as
e +Be—Li+v described in Sec. III, but once loops are
included, such as in Fig. 1, one must be careful to include
the symmetry factors. There is a similar analysis for the
photon propagator, whose first correction also comes
from Compton scattering and annihilation and/or
creation.

One can even take one step further in deciphering
these diagrams into a physical picture. The QED correc-
tion to the electron propagator represented by Fig. 5(a),
namely the inclusion of Compton scattering and e®
creation and annihilation, has the effect of changing the
mass of the electron. The dispersion relation takes the
form [14,15] (see Appendix B)

E?=p%l4+m2%*+m2p,u,T)c* . (12)
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FIG. 5. The first correction to the electron propagator is 4(a).
Instead of a loop, one can either cut the photon line in 4(a) and
think of a photon as coming in, scattering, and then going back
out into the thermal bath 4(b), or one can cut the electron line
and think of a positron coming in from the plasma, annihilating
with the electron, and then recreating and going back into the
plasma 4(c). The sum of these two is equivalent to 4(a). There-
fore, this correction is due to Compton scattering, and et an-
nihilation and creation. Integrating over all (thermal) momenta
of the electron will close the electron line in 4(a) and form a dia-
gram like Fig. 1(a).

Now one can use the definition of the pressure of an
ideal gas,

_T rdp , —(E-p)/T
P—?f#pln(lie w/T)

for fermions and/or bosons, to relate the correction to
the pressure to the change in mass:

1
Pi™ == (Pg—Pp,)

_1g 1 [dp p? bmitem Tt
2 : 2,”2 ﬁ3 EOi e(EOi—ui)/Til

+

) (13)

where the summation is over e~ and photons, and
E2,=p*?+m?2c* One must be very careful, though, to
include the coefficient of 1/2 in the right-hand side (RHS)
of Eq. (13), which is the symmetry factor discussed earlier
in this section. Equation (13) is equivalent to Eq. (14) in
Appendix A.

To summarize this section, we have used the dispersion
relation approach to gain physical insight into the QED
e’ pressure correction. The electrons gain an effective
mass through Compton scattering and annihilation
and/or creation, and this change in mass is directly relat-
ed 1o the change in pressure. This analysis is also true for
photons, whose effective mass (i.e., plasma frequency)
also changes due to Compton scattering. Notice (see Fig.
6 or the Appendix) that for T >>mc?, the change in mass
squared 8m? is positive, and for T <<mc?, 8m? is nega-
tive. This explains the change in sign of the e? term be-
tween Egs. (1) and (2).

VI. CONCLUSION

The classical calculation of the electromagnetic correc-
tion to the equation of state is not accurate in many as-
trophysical environments. This is not merely due to the
fact that one must include relativistic or degenerate
corrections, but rather there is a quantum electrodynam-
ic correction which is important even at nonrelativistic
temperatures and nondegenerate densities, such as in the
solar core. At high temperatures, such as in the early
Universe, or at high densities, it is necessary to use QED
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Big Bang at T = 2MeV
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FIG 6. The electron dispersion relation in different environ-
ments. The dashed line is the vacuum dispersion relation, while
the upper line is the dispersion relation for conditions in the big
bang at the time of neutron decoupling (7"=2 MeV). The lower
line is for conditions in the solar core. Notice that in these two
different environments, the correction to the mass of the elec-
trons is of opposite sign.

to find the largest correction to the equation of state be-
cause the classical Debye-Huckel theory breaks down.

Another perhaps more physically intuitive way to ap-
proach this problem is to use the finite temperature QED
dispersion relations when calculating the pressure or en-
ergy density. By using this approach we find that Comp-
ton scattering and e® annihilation and creation are the
physical processes involved in the correction. Calculat-
ing the dispersion relation has the added benefit of ena-
bling one to calculate QED effects on reaction rates in the
plasma.

This paper gives only two examples for the application
of the QED correction. There are other environments,
such as supernovae, which may also be significantly
affected by the QED correction to the equation of state.
The results for the examples of solar physics and big bang
nucleosynthesis show that the QED correction is certain-
ly large enough to warrant inclusion into solar and BBN
codes.
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APPENDIX A

For convenience, we will reproduce the exact formula
for the e? correction. This is taken directly from Ref. [4],
Eq. (5.55):
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where N¥(p)=1/(e'E*W/T41), Another important limit is u~0, used in cosmology.
In this case,
APPENDIX B
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(B1)

If m —pu>>T the last two terms are very small, as noted
by Ref. [15], but if m —u ~ T, then at small temperatures,
the third term begins to dominate and 8m? changes sign.
The change of the effective mass of the electron for finite
1 was calculated by Ref. [16] but they estimated the non-
relativistic limit incorrectly, namely, they ignored the
m —u~T regime. The importance of the third term
shows up in Fig. 5, giving the electron a negative correc-
tion to the mass.

(B2)

The above formulas are for changes in the electron
mass. The change in the “mass” of the photons is due to
a plasma frequency. For T <<mc?, 8m2, =e’n, #*/mc*,
which is similar to the second term in (14). Since this
term is very small compared to the third term in (14), we
will neglect it. For T >>mc?, 8m?%, =e>T?c/6# at high
frequencies [4]. Note that these are all changes for trans-
verse photons. The correction due to longitudinal pho-
tons (i.e., the longltudmal part of the photon self-energy
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