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Abstract

Nonexperts often exhibit regular and persistent patterns of errors when

answering questions about science concepts. Typically, these patterns are

considered to be due to high-level mental structures such as concepts or

mental models that are different from the relevant expert concepts. Here, I

consider the systematic influence of automatic, bottom-up processes on

answering patterns to science questions. General evidence of the exis-

tence of top-down and bottom-up processes is surveyed from a variety of

areas in cognitive science. Specifically, it is found that patterns of incor-

rect answering are a significant empirical driving force behind many

investigations in learning and performance, and many of these areas

invoke the need for bottom-up mechanisms to explain observations. The

application of some of these mechanisms to the area of student answering

of science questions is discussed. In particular, it is hypothesized that

patterns of incorrect answering on a broad class of science questions are

strongly influenced by the phenomenon of competition between relevant

and irrelevant information in the questions. I investigate the particular

cases in which the outcomes of this competition are mediated by the

relative processing times and allocation of attention to relevant and irrel-

evant information in questions. These mechanisms result in predictable

patterns of response choice, response time, and eye gaze fixations, and I

discuss some studies suggesting that these mechanisms are at work

when students answer specific physics questions. If, as suggested, auto-

matic, bottom-up processes play a role in performance on science tasks,

then this has important implications for models of understanding and

learning science.
1. INTRODUCTION
This chapter revolves around what could be regarded as the most
important empirical finding of science education to date, namely, that
people often answer simple scientific questions incorrectly, yet in regular,
patterned ways. More specifically, following Piaget’s numerous demon-
strations that children often answer ostensibly simple questions incor-
rectly, thousands of empirical studies have established that when concep-
tual questions about simple natural phenomena are posed to students,
their answers are often contrary to scientists’ answers, remarkably similar
to those of other students, and resistant to traditional instruction (for lists,
see Kind, 2004; McDermott & Redish, 1999; Pfundt & Duit, 2000). For
example, students often believe, even after traditional instruction, that an
upward traveling ball must have a net upward force acting on it (Clement,
1982).
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Thus, we find ourselves in a fortuitous situation: we have numerous
replicable empirical observations of how students respond to specific
science questions, sometimes in great detail. If patterns in the responses
are found, one can consider two general ways in which these findings can
be useful.1 First, information about students’ answering patterns can help
to inform instruction. An example of this is the several-decades demon-
strated success in physics curriculum design and implementation done at
the University of Washington, in which students’ incorrect answering
patterns have become a fundamental starting point for instructional meth-
ods (e.g., McDermott, 2001).

Second, patterns in the empirical data can be used to help buildmodels
of hypothesized mechanisms that cause the response patterns and perhaps
student responses more generally. Ideally, these models can help us to
make predictions of answering patterns to novel sets of questions.
Furthermore, these models of causal mechanisms may also make predic-
tions of how students would respond to specific types of instruction, and
as such the models may also prove useful for designing instruction to help
students answer difficult questions correctly.

In this chapter, I will concentrate more on the second approach,
namely, investigating models of basic mechanisms that can not only help
to explainwhy there are patterns of incorrect answers to science questions
but can also predict answer patterns. While most existing explanations of
answering patterns involve higher level mental structures such as miscon-
ceptions, I will consider the possibility that a number of bottom-up,
automatic mechanisms can play a significant role in the generation of
answering patterns.

The general idea that both bottom-up and top-down mechanisms
are at work in learning and answering questions related to physical
phenomena is hardly new. Some researchers have investigated and
discussed this topic, even going back to Piaget. Nonetheless, the inves-
tigation of the potentially important role of bottom-up mechanisms in
student answering patterns has been relatively ignored (especially in the
science education arena) and is consequently an underexplored topic
ripe for rigorous investigation. Therefore, in this chapter I will explore
some of the past work on the influence of bottom-up processes on
answering patterns and I will focus on the particular phenomenon of
competition.

Specifically, I propose that answering patterns are often strongly influ-
enced by competition between relevant and irrelevant information pres-
ent in a science question. I will examine how competition manifests itself
1In addition to the two uses mentioned here, it may also be useful to build phenomenological models that
reproduce observed response patterns for given questions, with minimal assumptions about the causes of
the patterns.
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in two interrelated ways. First, in most cases, the relevant variables in
science are not easily observable (e.g., density determines floating) and, as
a result, they are less likely to automatically engage attention than some of
the irrelevant variables (e.g., size does not determine floating). In addi-
tion, the relevant information in science is often more difficult to process
than irrelevant information and, as a result, more relevant information is
processed slower. For example, there are data (described below) suggesting
that students’ well-known preference for utilizing height rather than slope
on a graph is strongly influenced by the fact that in typical contexts height
is inherently processed faster than slope.

The outcome of the competition mediated by these mechanisms
may not only influence and thus help predict response choices but they
may also imply patterns in other response metrics, such as processing
time (e.g., response times) and attention (e.g., eye gaze) to specific features
of a posed question. Thus, the hypothesized role of many of these
mechanisms has the virtue of being testable by a number of different
measurement modalities.

This investigation of the role of basic, automatic mechanisms in
answering science questions stands in contrast to most existing explana-
tions in science education that focus on higher level structures or pro-
cesses, such as concepts or explicitreasoning, as causes of incorrect answering
patterns. Nonetheless, the more bottom-up mechanisms proposed here
are likely to complement higher level explanations.
2. THE GENERAL STRUCTURE OF ANSWERING PATTERNS

AND THE CRITICAL ISSUE OF SIMILARITY
Because the central theme of this chapter is about patterns in student
answering to science questions, it is worth considering the often ignored
yet important issue of howone comes to claim or establish the existence of
a pattern in answering. The empirical data of student responses to a set of
questions itself are in a sense ‘‘raw’’ data. The question of whether there
are any patterns in these raw data is, strictly speaking, a judgment based on
an arbitrary (though perhaps reasonable) definition of pattern. Such a
definition inevitably involves assumptions about the similarity of responses
and of questions. Therefore, in this section, I will discuss the necessity of
including explicitly constructed and acknowledged assumptions with any
claims of patterns. The intention of the discussion is to reveal that the
issue of patterns is fundamental to building a consistent, predictive
theory of student responses, is far from resolved, and is certainly a fertile
area for further empirical and theoretical investigation beyond the scope
of this paper.



The Ubiquitous Patterns of Incorrect Answers to Science Questions 231
I will consider twomain categories of patterns in answering: between-
student andwithin-student answering, since these two kinds of answering
patterns require fundamentally different explanations2 (see also Siegler
(1981) and discussions within about Piaget’s view on this).
2.1. Between-student answering patterns

As is commonly defined, a between-subject pattern is the phenomenon of
many subjects exhibiting similar performance on the same task. In science
education, this phenomenon occurs when a specific question is posed to a
number of students and many of them often answer incorrectly in ways
that are judged to be similar (see the next section for a discussion about the
similarity of responses). For example, when asked what is inside the
bubbles formed in boiling water, a significant number of students answer
that the bubbles are filled with air, when in fact the correct answer is that
they are filled with water vapor (Osborne & Cosgrove, 1983).

Between-student answering patterns can be explained in a general way
(though somewhat vaguely) by the fact that students are biologically
similar, namely, they have similar cognitive processes and perhaps even
similar ‘‘innate knowledge’’ (e.g., see Carey, 2009; Carey& Spelke, 1996),
and students have similar everyday experiences, including experiences of
the natural world and social experiences (e.g., Driver, Asoko, Leach,
Mortimer, & Scott, 1994; Gelman, 2009), which shape their actions.
2.2. Within-student answering patterns

Within-student answering patterns require a different kind of explanation
than between-student patterns. A within-student answering pattern of
interest occurs when a specific set of questions, judged tobesimilar in some
important way, is posed to a student, and the student provides answers that
are judged to be similar. Therefore, determining within-student patterns is
not straightforward, since it necessitates a judgment of similarity of both
questions and responses. Since similarity is always a judgment based on
a (presumably reasonable) choice of criteria, there is no one ‘‘correct’’
measure of similarity of questions and of responses, but there are certainly
some measures that are more useful than others, depending on the task at
hand. It is especially important to distinguish between a judgment of
similarity of questions and responses on the basis of expert knowledge
rather than on the basis of the student (i.e., answerer) point of view.

Judging the similarity of questions and responses based on an expert
point of view is often necessary from an instructional point of view, since
2Note there are other ways to search for patterns using a purely psychometric approach (e.g., C. Reiner,
Proffit, & Salthouse, 2005).
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the goal of instruction is for students to recognize similarity and apply
consistency as experts do. In fact, the assessment of a particular concept or
skill could be seen as the practice of constructing questions that are similar
from an expert’s point of view in that they test knowledge of that partic-
ular concept or skill. In this case, instructors often look for only one kind
of pattern: the pattern of correct answering. That is, the pattern that
matches the expert point of view. However, not only is there useful
information in patterns of incorrect answers, but students often do not
use the same bases for judging similarity between questions that experts do
(cf. Chi, Feltovich, & Glaser, 1981). Therefore, the interpretation of a
pattern or lack of a pattern in answering from an expert scientist’s point of
view may be misleading, and even instructionally counterproductive.
Instead, examining why students judge the similarity between questions
can be helpful information for instruction (e.g., see Driver &Easley, 1978;
Elby, 2001; Hammer, 1996a, 1996b).

Furthermore, since we are investigating the origin of within-student
answering patterns, examining student judgment of similarity of questions
(rather than expert similarity judgment) is warranted. In particular, we are
interested in causes of answering patterns (any proposed pattern that has
no cause could be regarded as arbitrary and not scientifically useful), and
students are presumed to be the cause. Therefore, I will make the general
assumption that a set of questions is answered in a similar manner by a
particular student because the questions are for some reason being treated
by the student in a similar manner. That is, within-student patterns occur
because the questions are judged to be similar by the student, either implicitly
or explicitly. For example, a student could perceive two questions as being
about the same thing (e.g., force and motion) and thus apply a coherent
impetus theory (i.e., misconception) to both questions. On the other
hand, two questions could also be treated as similar because some auto-
matic cognitive mechanism (of which the student in not necessarily
consciously aware of) is processing both questions in a similar manner.
Specific examples of such mechanisms will be discussed in Section 7.

Still, any claim of the existence of a within-student answer pattern
caused by student-judged similarity of a set of questions must be based on
an inference about the basis upon which the student is judging similarity.
This inference is inevitably made by the person who is claiming the
existence of a pattern. For example, is an explicit rule or concept (such
as impetus theory) used by the student to judge similarity of two ques-
tions, or is it some bottom-up perceptual similarity? This is an important
point because any claim of a within-student pattern is not solely an
empirical observation but necessarily also depends on an assumption
about the student’s basis for similarity judgment. A typical assumption
is that the students base their judgment of similarity of questions on some
particular naı̈ve concept. However, if the identification of the concept
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used by the student is incorrect or the student’s responses are based on
some other mechanism that does not involve an explicit concept (such as
an automatic bottom-up mechanism), then any claimed pattern may be
less meaningful. Alternatively, incorrect assumptions about a student’s
basis for judging similarity may result in a failure to recognize the presence
of a within-student pattern of answering.

In short, any claimed within-student pattern in answers practically
entails some assumption about the student’s implicit or explicit judg-
ment of similarity among the questions. Of course, any claim of within-
student answering patterns also depends on the nature of the judged
similarity in the responses. Such a judgment is usually done by the one
who is making claims of answering patterns and is inevitably related to
the assumptions of the student’s bases for judging similarity of questions.
In addition, one can measure and compare not only the content of the
responses but also the other factors, such as time to respond and alloca-
tion of attention.

Therefore, the task of claiming within-student patterns on a given set
of questions must critically include a detailed characterization, via com-
parative measurements or other analysis, of the bases upon which one is
claiming similarity of both the questions and the answers. Ultimately, a
careful description of the nature of the similarities will help to provide
insight and clarity about the mechanisms underlying these answer
patterns.

In practice, the issue of determining the basis of similarity judgments
necessary for claiming patterns of answers has been implicit and relatively
straightforward. It is common to find that questions and student responses
are grouped into a few readily recognizable (by experts and even many
students) and robust categories that include the correct response and a
couple of prevalent incorrect response types (e.g., Bao & Redish, 2006).
For example, Siegler (1976) found that when students are given balance
task problems, one category of responses is to choose the side with the
larger mass as winning, regardless of the length of the lever arm. In some
cases, Chi (2005) points out that responses have been categorized in terms
of past scientific theories, such as the impetus theory for force and motion
questions. In order to account more for the student perspective, many
researchers have carefully studied student responses and constructed rea-
sonable categories of student responses that are specific to the domain. For
example, Vosniadou and Brewer (1992) categorized student models of the
earth according to various specific student models (flat, hemisphere,
round, etc.). Chi (2005) has also pointed out another way to categorize
responses in a more domain general manner, by looking for students’
tendencies to answer according to ontological categories.

Nonetheless, it is important to keep inmind that these above examples
of claims of student answering patterns necessarily make assumptions
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about how students interpret and answer the questions. We will discuss
such assumptions in more detail in Section 3.
2.3. Summary

While between-student and within-student answering patterns tend to
empirically occur simultaneously, both require different explanations. For
the former, one must explain why students are similar; for the latter, one
must explain why questions are similar. Both must characterize how
responses are similar, though one can compare more than just the content
of a response and look to other metrics such as response time.

From a general viewpoint, between-student patterns are somewhat
trivially explained by the fact that students have similar biology and have
many similar daily experiences. However, it is still a challenge to explain
whymany students tend to choose a specific answer to a specific question.

Explaining within-student answering patterns requires an explicit
characterization and demonstration of the basis upon which students
(rather than experts) are perceiving—either implicitly or explicitly—
the similarity of questions.
3. EXISTING EXPLANATIONS FOR INCORRECT ANSWER PATTERNS

TO SCIENCE QUESTIONS
In this section, I will briefly review major existing explanations of
incorrect answer patterns for science questions. I will focus on explana-
tions of results from students that are typically between 10 and 20 years of
age. There is also a significant amount of work on the development of
concepts in young children that can be relevant to incorrect answering
patterns on science questions (e.g., Carey, 2009; Gelman, 2009), though I
will not discuss this here.
3.1. Misconceptions

Themost widely assumed explanation for incorrect answer patterns stems
from the abductive inference that the patterns are caused by somewhat
coherent and generally applied ‘‘misconceptions’’ or ‘‘naı̈ve theories’’
cued by the question and constructed by students from their everyday
experience (e.g., Carey, 1985; Driver & Erickson, 1983; McCloskey,
1983; Vosniadou, 1994;Wellman &Gelman, 1992). A student, for exam-
ple, might (incorrectly) answer that a ball traveling on a curved track
would continue to travel in a curve after leaving the track because he/she
has developed a coherent theory predicting that when objects are moving
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in a curved path, they will continue to move in a curved path, even in the
absence of external forces (McCloskey, Caramazza, &Green, 1980). Note
that this explanation directly addresses the case of within-student answer
patterns. Since it is also found that many students exhibit the same
consistent answer patterns (i.e., between-student patterns), presumably
these students have all formed the same misconception because they have
derived it from everyday experiences common to all students.

The term misconception is frequently used in the literature, and it is
important to note that the term actually describes an inference about the
cause of patterns of incorrect answering rather than an empirical obser-
vation of student answering. Clearly, it is logically valid that if students
held coherent, incorrect theories (i.e., misconceptions) and if they con-
sistently applied these theories, then they would likely answer relevant
questions in patterned incorrect ways (following the pattern of the mis-
conception and its consistent application). However, it is not necessary to
have a misconception in order to produce patterns of incorrect answers:
the patternmay also be due to other causes. Thus, I will sometimes refer to
patterns of incorrect answering as misconception-like answers.

The misconceptions explanation has been critiqued because it was
recognized that the model of student-held coherent yet incorrect theories
was not universally valid at least in its strictest interpretation in two ways.
First, when students were asked questions about or relevant to their
putative theories, the theories themselves were often highly fragmented,
incomplete, and logically inconsistent certainly from the point of view of
the expert and often even from the perspective of the student (e.g.,
diSessa, Gillespie, & Esterly, 2004; for a discussion, see Keil, 2010).
Second, student answering was shown to often be fairly sensitive to
context; thus, within-student patterns of incorrect answers could be
disrupted by simply making small changes to the context of the question.
For example, on the question concerning objects moving in a curved
path, Kaiser, Jonides, and Alexander (1986) found that significantly many
students answered that water would come out of a curved hose in a
straight line, and significantly less answered that a ball would come out
a of curved tube in a straight line.

Of course, this critique of the misconceptions explanation could be
at least partially addressed by the fact that the questions judged to be
similar by an expert may not be perceived as similar by the student,
therefore a lack of a pattern could be expected. Furthermore, there are
many examples in which students do consistently answer incorrectly in
ways that are consistent with them holding an incorrect concept for a
significant set of questions. However, in some cases, the answering is so
fragmented evenwith small changes in question context that it is difficult
to imagine that the student holds a robust theory that is applied to many
situations.
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3.2. Knowledge in pieces or resources

In light of the demonstrated sensitivity of student answering to the
context of some questions, others have suggested that rather than cuing
coherent theories, questions with different contexts instead cue differ-
ent (and often incorrect) combinations of ‘‘pieces of knowledge.’’ In
this way, within-student patterns of incorrect answers could be dis-
rupted. Between-student patterns were still observed for a given ques-
tion, and this could be explained because students have many of the
same experiences; thus, a given question will often cue similar combi-
nations of pieces of knowledge, resulting in student responding with
similar incorrect answers. The pieces of knowledge represent basic
phenomena such as ‘‘force as mover’’ (diSessa, 1993) or relations such
as ‘‘more xmeans more y’’ (e.g., Stavy & Tirosh, 2000). A perhaps more
general version of the pieces of knowledge explanation claims that
questions may cue incorrect ‘‘resources’’ that students use to answer a
question (e.g., Hammer, 2000). These resources can be wide ranging
and include factual knowledge, basic relations, procedural knowledge,
and epistemological beliefs. An especially powerful aspect to the
knowledge in pieces model is the notion that student often have
‘‘untapped’’ knowledge and skills that can be used to improve their
learning and performance (e.g., Hammer & Elby, 2003). To support
this, there is evidence that students sometimes have the correct knowl-
edge available to answer correctly, but this knowledge is often not cued
(Hammer, Elby, Scherr, & Redish, 2005; Heckler, 2010; Sabella &
Redish, 2007).

Finally, it should be noted that a more comprehensive version of the
knowledge in pieces explanation is in fact extended to include loosely
bound collections of pieces of knowledge that can form something
resembling a coherent concept, thus explaining the presence of within-
student patterns in some cases (e.g., diSessa & Sherin, 1998).
3.3. Ontological categories

Somewhat independent of the misconceptions and knowledge in pieces
explanations is a third prominent explanation for incorrect patterns in
answering. Some researchers (e.g., Chi, 2005; Reiner, Slotta, Chi, &
Resnick, 2000) provide arguments and evidence for a ‘‘domain general’’
mechanism for misconception-like answering patterns, as opposed to
‘‘theory-specific’’ or ‘‘domain-specific’’ explanations of misconceptions
and knowledge in pieces. The domain general process they investigate is
the incorrect categorizing of the ontological nature of certain physical
variables or phenomena (e.g., Chi, Slotta, & de Leeuw, 1994). For exam-
ple, students commonly (incorrectly) believe that force is a substance in
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the sense that objects ‘‘have’’ a force (Reiner et al., 2000). Like the
misconceptions explanation, this explanation can account for within-
student answering patterns.
3.4. Summary

The explanations involving student-held concepts, theories, or models
tend to naturally explain the presence of within-student patterns, while
explanations involving more fragmented knowledge in pieces explana-
tion tend to naturally explain the absence of within-student patterns
that might be expected if students held coherent misconceptions. Both
kinds of explanations have been modified to explain the presence or
lack of answer patterns to some degree, though there is still debate
about the validity of each explanation (e.g., see diSessa, Gillespie, &
Esterly, 2004).

The existing explanations of coherent yet incorrect concepts or the-
ories, incorrect ontologies, or knowledge in pieces all account for within-
student patterns for at least some sets of questions. However, since each
explanation is different, they may also identify and explain different
patterns of answering. For example, the misconceptions explanation
tends to be quite domain specific and will tend to search for and identify
patterns within a specific domain, whereas the ontological category
explanation is more domain general; consequently, this kind of approach
will tend to search and identify patterns that are more domain general. On
the other hand, these different explanations all appear to agree on the
general reason for between-student patterns, namely, that whatever
mechanism is responsible for the within-student patterns is common to
all students.

Finally, a caveat: I have focused here on incorrect answer patterns
specifically to science questions, yet there is also significant work on
pattern of incorrect answers to more general questions, of which science
is a subset. In particular, I refer to the field of heuristics and biases and the
pioneering work of Tversky and Kahnemann (1974). I will address this in
Section 6.1.
4. THE INSUFFICIENCY OF EXISTING EXPLANATIONS
While explanations discussed above are useful in the examination of
student answering patterns, this section discusses three limitations of these
explanations. Section 5 then describes an empirical example highlighting
these limitations and the need for the inclusion of a more bottom-up
mechanistic explanation.
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4.1. Limitation 1: patterns are typically assumed to be caused
by high-level mental structures and processes

I would like to emphasize that the critical question addressed in this
chapter is ‘‘What causes student incorrect answer patterns to science
questions?’’ This is a question about an empirical observation that allows a
broad range of possible explanations. In contrast, the typical approach to
the empirical evidence is to assume that the patterns are caused by ‘‘higher
level’’ mental structures such as concepts, schemas, mental models, or
loose collections of pieces of knowledge (e.g., Carey, 1985; Driver &
Erickson, 1983; McCloskey, 1983; Novak, 2002; J. P. Smith, diSessa, &
Roschelle, 1993; Vosniadou, 1994).3 These approaches tend instead to ask
questions such as ‘‘What are the student concepts that explain the answer
patterns?’’ or ‘‘How are incorrect concepts learned?’’ These questions are
not directly about empirical observations of answering patterns, rather
they are questions about inferences about the observations. In short, the
typical approach to the empirical observation of incorrect answering
pattern is to already assume the cause of the patterns, namely, that they
are a result of some high-order mental structure such as concepts or
mental models.

The origin of this assumption may be traced back to Piaget (1952/
1936, 1972/1970), who argued that scientific knowledge cannot be
learned from sensory information alone, but rather requires explicit
higher order thinking and interaction with the world in order to form
high-level mental schemas necessary for scientific knowledge (see also
Driver et al., 1994; Leach & Scott, 2003; Taber, 2010; Vosniadou,
1996).4 Therefore, the argument goes: since higher level structures of
knowledge are needed to understand science, such mental structures
are needed to answer science questions in a correct and consistent
manner.

However, the topic of this chapter is not directly about the origins or
nature of scientific knowledge, it is about the origins of incorrect answer-
ing patterns to science questions. While one might agree that answering
science questions consistently correctly may require correct higher level
mental structures, answering incorrectly in patterned ways does not nec-
essarily require a higher level mental structure. The patterns could be
caused or strongly influenced by more basic, bottom-up processes that are
implicit and relatively unknown to the answerer.

In other words, even if we assume that consistently correct answering
occurs if and only if the answerer holds the correct concept (let us ignore
3Some models, such as Vosniadou’s (1994) framework theory, include lower level unconscious aspects to the
proposed mental structure.
4Note that there is also much discussion about the difference between individual cognition and social
cognition (e.g., Leach & Scott, 2003), which we will not discuss here.
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the possibility of false positives for simplicity), it still does not logically
follow that incorrect answering patterns imply an incorrect concept.5

Rather, incorrect answering only implies the absence of a correct concept,
which could imply either the presence of an incorrect concept or the
absence of any concept at all. For example, misconception-like answers
could stem from implicit, automatic, and relatively unconscious processes
that direct the student toward ‘‘undesired’’ answers in regular ways and
may have little to do with consistently applied explicit concepts. One
might claim that a pattern in answering requires some regularity in mental
structure. This may be true, but it does not require a high-level mental
structure—regularity in answering could be due to more basic processes.
Therefore, most explanations of patterns of incorrect answers assume only
one cause, namely, high-level mental structures; here, I would like to
consider another influence (if not an alternative cause), namely, bottom-
up processes.

Finally, the lack of a clear operational definition of high-level mental
structures (e.g., a scientific concept) severely limits scientific progress of
the high-level mental structures approach to explaining incorrect answer-
ing patterns to science questions (cf. diSessa & Sherin, 1998; diSessa et al.,
2004). If one is to argue that mental structures such as concepts or mental
models cause answering patterns, it is critical to establish a robust, unam-
biguous definition of such structures based on empirical observations
characterizing the extent to which a student has a particular mental
structure. Constructing such a definitionwill be a challenge. For example,
if one cannot decisively claim that high-level mental structures are the sole
cause of answering patterns, then one cannot use answering patterns as a
sufficiently decisive empirical measure of the existence of high-level
mental structures. This is related to the argument discussed earlier that
any claim of the existence of patterns practically requires some assumption
of the cause of the patterns, which may or may not be due to high-level
mental structures.
4.2. Limitation 2: current explanations have limited
predictive power

As mentioned in the introduction, one of the main scientific reasons for
constructing a causal explanation of an empirical phenomenon is to make
specific predictions about other, related empirical phenomena. There is
5Perhaps it should not be surprising that such a compelling, complementary, converse ideawas also assumed.
That is, if correct answering patterns result from correct concepts, then one might also imagine that
incorrect answering patterns result from incorrect concepts or misconceptions. This ‘‘counterpart con-
cept,’’ so to speak, may be especially compelling given the strong evidence that prior knowledge interfered
with learning the correct concept. The symmetric picture is completed with the assumption that this
interfering prior knowledge is none other than a misconception.
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value in post hoc explanations of existing empirical evidence, though an
explanation increases in usefulness (a) the more it can be generalized to
predict other situations and (b) the more specific the predictions can be
about any given situation. This also implies that the more scientifically
useful a model is, the more testable it is.

Current explanations of misconception-like answering patterns do
have some predictive power, though the predictions are quite limited.
One reason for this is because most current explanations are done post hoc.
For example, the well-known phenomenon of incorrect answering to
force and motion problems was not predicted. Rather, it was empirically
discovered (e.g., Clement, 1982; Viennot, 1979) and then later explained
as being due to students having an incorrect impetus theory of force and
motion. This explanation could not be generalized to predict student
answer patterns for questions about other physics topics such as simple
circuits. It might be argued that since it is to be expected that students
construct many concepts in the course of everyday life, themisconception
model predicts that, in general, incorrect answer patterns are likely to be
found for many other topics, though it cannot predict which topics or
what those patterns will be.

There are, however, some specific predictions that the misconcep-
tions model does make about students answering questions, specifically
about force and motion questions. In its strictest interpretation, the
model predicts that a subpopulation of students will answer all force and
motion questions with an impetus motion model. Scientifically, there is
an advantage to this model: it makes a specific prediction. As it turns
out, the model’s predictions are marginally successful in that they do
predict some observed patterns, but other times the prediction of
patterns are incorrect; thus, the model does not hold up to all empirical
observations. Nonetheless, this test should be considered scientific
progress: the model made a prediction, and the prediction was empir-
ically tested. The picture for the predictive power of the ontological
category model is very similar to that of the misconception model, and
it too has succeeded in making some specific predictions but has failed
at least one test of its strictest interpretation (Gupta, Hammer, &
Redish, 2010).

The resources or knowledge in pieces models, which include the
cuing of much finer-grained mental structures, have similar limitations
of predictiveness as the misconceptions model in that the resources model
also employs post hoc explanations for specific answer patterns (due to
cuing of ‘‘incorrect’’ resources) rather than specific predictions of answer
patterns. However, because the model is so flexible, there has yet to be any
specific, testable predictions for this model (to the knowledge of the
author), though there have been some preliminary attempts (e.g.,
diSessa et al., 2004; Elby, 2000). In order to achieve more scientific
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progress with such a model, more effort must be made to deduce testable
predictions from it.6

In sum, current high-level mental structure explanations, such as the
misconceptions model, do make a limited number of specific predictions
about answering patterns to some specific questions. The misconception
model predictions have been somewhat accurate in specific domains,
though they have very limited predictive power and scientific usefulness
in their current state. If more scientific progress is to be made in this area,
mental structure theories models need tomake significantlymore specific,
testable predictions about answering patterns that apply to a range of
questions. This will likely entail the incorporation of specific mechanisms
and quantifiable models, which tend to be missing in current models.
4.3. Limitation 3: current explanations rarely consider
response data beyond the response content

The overwhelming majority of studies on student responses to science
questions investigate the content of the student responses, such as the
correctness of the response, the patterns of answer choices in a multiple
choice test, the explanations in an interview, and the solution method in a
problem solving task. However, there are a number of other response
measurements that can be extremely useful, including response time, eye
tracking, gesturing, and measurements of brain activity. Some of these
modes will be discussed in Sections 6 and 7. Indeed, this is a growing area
of activity that will provide much needed empirical data useful for testing
models.

Since these additional response metrics tend to measure rapid, bottom-
up processes of which the answerer is unaware, theywill allow the testing of
models that include bottom-up as well as top-down processes. A challenge
for models such as the misconceptions model or the knowledge in pieces
model will be to make testable predictions of such measurements.
5. EXAMPLE: THE CASE OF COMPETING RELEVANT AND IRRELEVANT
INFORMATION
In light of the general limitations discussed in the previous section of
existing high-level mental structure explanations of student answering
patterns to science questions, I would like to point out a particular
6However, the resources model has proved useful in other ways (e.g., Hammer 1996), namely, for orienting
strategies for instruction. The interest here is in the scientific value of the model in terms of predicting
answering patterns, which is not the same. The scientific liability of current models is to be distinguished
from the instructional usefulness of models such as the misconception model or the resources model.
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limitation. This limitation can be framed in terms of the notion of
competition.

Explanations employing high-level mental structures typically assume
that a specific question activates a specific mental structure in the student,
be it a coherent theory, mental model, an ontological frame, or loosely
bound pieces of knowledge, and this activated structure in turn leads to a
specific response. However, these explanations do not (currently) include
specific mechanisms that explain (or predict) which specific mental struc-
ture will be cued as opposed to another. For example, if a number of
concepts and resources are plausibly relevant to the student for a given
question posed, then why are only particular ones used in a given case?
Since these explanations to not provide a specific mechanism responsible
for activating one ‘‘plausible’’ concept over another in a given case, they
will not be able to explain why a particular answer was chosen.
Furthermore, if more than one concept is activated, then how is an answer
choice determined? Does this mechanism for determining the answer
choice result in a pattern of answers?

This limitation can also be described in terms of the information that is
presented by the question and perceived by the student. Presumably, the
student will often attend to both relevant and irrelevant information (as
judged by an expert). What is the mechanism that determines which
information is attended to or used to determine the answer? In other
words, if a question presents a variety of information relevant to various
competing mental structures, then what determines the outcome of the
competition, and ultimately the student response?

To illustrate this point, consider the known difficulties students have
with understanding the relation between electric field (E) and electric
[(Figure_1)TD$FIG]

Figure 1 Undergraduate physics students compared the electric fields between the
two sets of plates at the indicated voltages. For a series of eight questions, about 50%
of the students consistently and incorrectly chose the point with the greater value of
the voltage at the point between the plates (here, ‘‘B’’). Less than 40% consistently
chose the correct answer, which is found by taking the difference between the voltages
of the plates. This misconception-like answering pattern could be considered as due
to competition between relevant and irrelevant information.
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potential (V), which is measured in volts (e.g., Maloney, O’Kuma,
Hieggelke, & Van Heuvelen, 2001). For example, Figure 1 presents
some data collected in my lab that are typical of the confusion in the
relation between E and V. Thirty-five undergraduate physics students
were shown a diagram of two sets of metal plates held at indicated
voltages, and they were asked to determine which point midway
between each set had a greater electric field (magnitude). The task was
given post relevant instruction, so the students were reasonably familiar
with these diagrams. This is a fairly simple and straightforward question
in which a student may apply the idea that the magnitude of the electric
field is proportional to the gradient of the electric potential, E ¼ dV=dxj j.
For this task, since the separation between each set of plates is the same,
this simplifies to the idea that the point with the greater electric field is
the one for which the di¡erence in electric potential between the plates is
the greatest. Instead, about 50% of students post instruction consistently
and incorrectly chose the point with the greatest value of electric poten-
tial.Why is there often a consistent preference for the value of the potential
rather than the di¡erence in values between two plates?

Let us consider two possible scenarios that highlight the insufficiency
of the misconception and knowledge in pieces explanations mentioned
above, thus illustrating the need for a more specific mechanism that can
explain and predict an answer preference resulting in a pattern of errors.
The first scenario is centered around the notion that the students have
learned the (incorrect) concept ‘‘the value of electric potential at a point
predicts electric field,’’ but have not learned the correct concept ‘‘gradient
of electric potential predicts electric field,’’ and this explains their patterns
in answering. However, the question still remains as to specificallywhy the
potential–field association was learned and why the potential gradient–
field association was not learned.

The second possible scenario is based on the possibility that many
students may have in fact learned both the association of electric potential
with electric field and potential gradient with field, but there is nonetheless
a preference for one because of the nature of the specific question. In this
example (as well as many others), potential and difference in potential com-
pete, and the former often wins. From the misconceptions perspective,
students hold both the correct and incorrect concepts, but there is no
explanation (or prediction) specifying why many students consistently
choose the scientifically incorrect concept over the correct one for this
question. Likewise, in terms of knowledge in pieces, one might claim that
the question cued a basic relation such as ‘‘more is more.’’ However, this
basic relation could be applied to both the value of the electric potential and
the difference in electric potential (more potential is more field, or more
difference in potential is more field), and the knowledge in pieces approach
also does not specify why one ‘‘more is more’’ was preferred over the other.
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In sum, existing explanations of patterns of incorrect answering on
science questions do not provide specific predictions or mechanisms that
determine why, for a given specific topic, there may be a preference for
learning a scientifically incorrect concept relevant to that topic rather than
a correct one, or if students have learned both correct and incorrect
concepts, why students choose one over the other when responding to
a specific question.

It may be possible to modify mental structure models to explain and
predict the outcomes of competition. Nonetheless, in the following sec-
tions, I describe some specific bottom-up mechanisms that can naturally
help to explain and predict the outcome of competition between com-
peting relevant and irrelevant information in at least some questions,
namely, that many students tend to base their decision on the dimension
that is processed the fastest or garners the most attention, even if it is
incorrect. First I will briefly review some previous work that has exam-
ined the role of bottom-up mechanisms relevant to science learning and
performance.
6. BOTTOM-UP VERSUS TOP-DOWN PROCESSING: EVIDENCE
FROM ANSWER PATTERNS
The idea that there are two kinds of cognitive systems involved in
learning and performance has been discussed in the field of psychology for
over 100 years (e.g., James, 1950/1890; Johnson-Laird, 1983; Neisser,
1963; Piaget, 1926; Shiffrin & Schneider, 1977; Vygotsky, 1987/1934).
There are a number of recent studies demonstrating that higher and lower
order processes interact significantly in decision making and reasoning
(Alter, Oppenehimer, Epley, & Eyre, 2007; Evans 2003, 2008; Gl€ockner
& Betsch, 2008; Kahneman & Frederick, 2002; Sloman, 1996), category
learning (Kloos & Sloutsky, 2008; Maddox & Ashby, 2004), memory and
recall (Poldrack & Packard, 2003), and language learning (e.g., Smith,
Jones, & Landau, 1996).

Some of the evidence of twomental processing systems stems from the
observation that for many tasks there appears to be two distinct ways to
arrive at a response, and in many cases these two paths lead to different
responses (cf. theCriterionS of Sloman, 1996). One kind of response tends
to be fast, implicit, intuitive, automatic, and relatively effortless and is
ascribed to being a result of System 1 processes. The other response tends
to be slower, explicit, and effortful and is thought to come from a System 2
process (e.g., Evans, 2008; Kahneman & Frederick, 2002; Stanovich &
West, 2000).
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Figure 2 Examples of tasks that provide evidence of two different systems at work
in the course of solution: one automatic and implicit and the other deliberate and
explicit. In these cases, the different systems lead to different answers. In particular,
the fast, automatic system leads to ‘‘incorrect’’ answers, thus implying that one can
construct a pattern of incorrect answers with similar tasks. The first task is an optical
illusion in which one is to compare the lengths of the horizontal lines. The second
task is the well-known Stroop task, in which one is to name the color of the letters.
On the third task, constructed and studied by Kahneman and Frederick (2002), most
college students answer (incorrectly) ‘‘10 cents.’’
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An optical illusion is a classic case; an example, as pointed out by
Sloman (1996), is the Muller-Lyer illusion (see Figure 2). In this case,
the System 1 ‘‘perceptual’’ response is fast and clearly conflicts with the
System 2 response that comes from reasoning that would include a con-
crete measurement. Other examples of two systems at work, some of
which are presented in Figure 2, include the Stroop effect (e.g.,MacLeod,
1991), belief bias (e.g., Evans, 2003), relapse errors (Betsch, Haberstroh,
Molter, & Gl€ockner, 2004), and perseveration (Brace, Morton, &
Munakata, 2006). Of course, these empirical phenomena are not all
proposed to be caused by the same mechanism, but all of them have been
explained in terms of a dual system similar to System 1 and System 2.

While there are some issues about the ambiguity of the meaning of
System 1 and System 2 processes (e.g., see Evans, 2008), there are a
number of studies testing predictions resulting from models that assume
dual interacting systems at work in learning and performance in reasoning
(DeNeys, 2006), relapse errors (Betsch et al., 2004), Stroop effect (Cohen,
Dunbar, & McClelland, 1990; Kane & Engle, 2003), and category learn-
ing (Sloutsky, Kloos, & Fisher, 2007; Zeithamova & Maddox, 2006).
There is further evidence building in neurological findings, showing that
different areas of the brain are active during the putative engagement of
the two different systems (e.g., Goel, Buchel, Frith, & Dolan, 2000).

A related line of compelling evidence of the existence of nontrivial
implicit knowledge and skills is the field of implicit learning (e.g., Reber,
1989). In short, humans can unconsciously learn fairly complex rules that
are applicable to novel (though somewhat limited) tasks (e.g., Berry &
Dienes, 1993; Reber, 1993). For example, people can learn to remember
strings of letters better if the strings have fairly complex statistical structure
compared to remembering a random sequence, even though the learners
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are unaware that they are learning any structure. In addition, they can
recognize new strings that are similar in structure to the ones they learned,
though they are unable to report why they are similar. Evans, Clibbins,
Cattani, Harris, & Dennis (2003) provide evidence of the learning in
multicue judgment tasks involves both implicit and explicit knowledge,
and this may help to explain why experts typically cannot fully explain
their knowledge of rules used in tasks, because some of this knowledge is
in fact implicit.

Finally, there is an illuminating difference between cognitive science
studies on dual systems and science education studies on student answer-
ing to science questions. The above empirical studies, such as the Stroop
effect, or optical illusions reveal a pattern of incorrect answering, yet the
patterns of answering in this case are usually seen as evidence of automatic
processes rather than evidence of a high-level mental structure such as a
misconception.7 For example, one would not claim that the Stroop effect
is the result of a misconception. In contrast, in science education research,
the patterns of incorrect answers to science questions have been taken as
evidence of high-level mental structures such as misconceptions.
6.1. Heuristic and biases

The study of judgment and rational choice has a rich history in cognitive
science and is related to the topic of incorrect answer patterns to science
questions. This is partly because the study of judgment and choice is
partially driven by the empirical observation that people often make
systematic errors in judgment and choice. For example, in a series of
classic studies, Tversky and Kahneman (1974) demonstrated that people
tend to make general kinds of systematic errors in questions that require
some level of quantitative or probabilistic judgment. For example, people
have biases in judgments of the relative sizes of populations due to retriev-
ability from memory. When verbally given a list of male and females,
people tend to judge the list has more of one gender if more of names of
that gender in the list are famous names.

Based on earlier work by Simon (1955), these patterns have often been
explained in terms of boundedrationality, namely, that people make rational
decisions that automatically include real-world constraints such as limited
time and limited access to information. This idea in turn has led to
explanations of systematic errors as due to the use of heuristics. That is,
the hypothesis is that people use fast and efficient heuristics to make
7There are exceptions: one might attribute errors in syllogistic reasoning as the result of a mental model
(Johnson-Laird, 1983), though this explanation makes assumptions of implicit processes as well (Evans,
2000).
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judgments and choices.While inmost cases this process is quite successful,
in other cases the use of heuristics can lead to biases that cause systematic
errors. For example, Goldstein and Gigerenzer (2002) discuss the recogni-
tion heuristic: if two alternatives are provided and one must choose only
one based on some criterion and only one of the alternatives is recognized
(familiar), then assume that the recognized one has a higher value of the
criterion. The common task used to demonstrate the use of this heuristic
is the case in which people are given the names of two cities in the world
and asked to choose the one with the higher population. People often
choose the city name that they recognize. For reviews of the topic of
heurisitics and biases, see, for example, Gigerenzer (2008), Kahneman
(2003), and Gilovich and Griffin (2002).

Evidence for the existence of heuristics has typically come from the
recognition that, empirically, a given strategy or heuristic is used in many
kinds of relevant problems by many people. See Gigerenzer (2008) for a
number of examples of heuristics that are empirically well supported. In
addition, there has been some progress in establishing testable predictions
from the somewhat detailed models of heuristics that bolster the scientific
usefulness of the heuristics hypothesis (e.g., see Bergert & Nosofky, 2007;
Gigerenzer & Brighton, 2009).

There are two main reasons for bringing up the topic of heuristics.
First, since the notion of heuristics was applied to explain patterns of
incorrect answering, the pervasive use of heuristics may be an alternative
or complementary explanation of misconception-like answers to science
questions. Second, the heuristics tends to be regarded as an automatic,
bottom-up process rather than an analytic explicit reasoning process (e.g.,
Evans, 2008; Kahneman, 2003). Therefore, if misconception-like answers
to science questions are influenced by bottom-up processes, then heur-
istics models may be candidates for such processes.

In Section 7, I briefly mention how this may be applied to a specific
example, but clearly the application of the hypothesis of general use of
heuristics to answering science questions has potential to be a rich area for
study in more detail.
6.2. Studies on bottom-up processes in science learning
and performance

While the overwhelming majority of studies on student responses to
science questions have focused on higher level mental structures, there
have been a small number of studies investigating evidence of more
implicit lower level processes taking placewhen students answer questions
about natural phenomena.

The phenomenon of representational momentum is an example. If a
student observes an image of an object undergoing implied or apparent
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motion and the object then suddenly disappears, the immediate memory
of the last position of the object is shifted forward from the actual last
position, as if to imply a continuing motion of the object (Freyd & Finke,
1984). This phenomenon is called representational momentum because
most have interpreted the results as evidence that the perceptual system
internalizes physical principles of motion and creates a representation of
the motion that manifests itself, for example, in distorted memories
(Freyd, 1987, 1992; Hubbard, 1995, 1998). The effect is small and
short-lived but reliable, and the observers are not aware of the distortion;
thus, it could be considered as implicit knowledge.

Interestingly, the implicitly projected paths do not always follow
Newtonian motion. For example, Freyd and Jones (1994) found that
for a ball exiting a circular tube, the perceptually preferred paths were
in a continuing spiral rather than a straight line. They argued that this
may help to explain why some students explicitly choose the incorrect
spiral path when the question is posed explicitly. That is, there may be
some influence of the implicit knowledge on the explicit answering.
Similarly, Kozhevnikov and Hegarty (2001) found that even experts’
implicit knowledge as measured by representational momentum is
non-Newtonian, even though their explicit answers are Newtonian.
Although it would appear that this implicit knowledge is difficult to
change (however, see Courtney & Hubbard, 2008), they propose that
it may still affect answering even of experts under certain constraints
such as time limitations.

There are other kinds of studies demonstrating students ‘‘saying one
thing, but doing another’’ on science-related tasks that would suggest
that there are implicit and explicit systems separately influencing per-
formance. For example, Piaget (1976), as pointed out by Oberle,
McBeath, Madigan, & Sugar (2006), found that children could hit
targets by appropriately letting go a string attached to an object that
they were twirling in circles above their heads, but when asked in a paper
and pencil task when the ball should be released, they answered incor-
rectly (i.e., they answered when the string was aligned with the target).
Likewise, Oberle et al. asked students to compare the times it would take
to two objects of either the same mass and different size or same size and
different mass to fall the same (fairly large) height in the realistic scenario
when air resistance is explicitly included. They found that students often
answered that the objects would fall at the same rate. However, when the
students were asked to physically drop two balls such that they would
land at the same time, they found that students would drop the balls at
di¡erent times, contrary to their explicit answers, They attributed this
difference in answering to two different systems, namely, a perceptual
system based on everyday perceptual experience and a higher level
conceptual system.
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There are also a number of studies investigating the student responses
to themotions of objects, demonstrating that althoughmany studentsmay
answer incorrectly on questions about motion represented by static dis-
plays, they often answer very accurately when the motions are animated
(see Rohrer, 2003). For example, when given a choice of trajectories of a
ball leaving a curved tube, students will answer correctly more often when
given an animation compared to a static diagram (Kaiser, Proffitt, &
Anderson, 1985). However, the benefit of animation decreases with
increased complexity of motion (Kaiser, Proffitt, Whelan, & Hecht,
1992). This difference in responding has been interpreted as due to the
static diagrams cuing explicit (incorrect) reasoning knowledge based on,
for example, impetus models and the animated format cuing implicit
perceptual knowledge that is based on common experience.

Finally, there are a number of studies on learning that indicate the
existence and importance of low-level implicit automatic processes relevant
to mathematics concepts. For example, in a study on 8–10-year-old chil-
dren learning to solve simple addition problems, Siegler and Stern (1998)
found that the time to solutionwas a reliablemeasure of the solvers’ implicit
use of a shortcut strategy. They found a bimodal distribution of times to
solution with the solvers using the shortcut strategy solving the problem
faster. Over a period of weeks, students became better at solving the
problems and, perhaps most interestingly, many students started to use
the shortcut strategy (as measured by time to solution) before they were
explicitly aware of it as verbally reported by the solver. This suggests that
there is a process of unconscious strategy discovery.

Furthermore, some researchers have investigated how math learning
may be influenced by the phenomenon of perceptual learning, which is
lower level, unconscious learning that results in an increase in the ability to
extract information simply through experience (no explicit feedback is
required). Kellman, Massey, and Son (2010) have found that simple
perceptual learning tasks improve performance on higher level math tasks,
for example, by increasing the learner’s ability to focus on relevant rather
than irrelevant dimensions. Goldstone, Landy, and Son (2010) provide
evidence for the argument that the low-level perceptual system can
adapt (i.e., learn) to achieve specific purposes, such as automatic rec-
ognition of symbols or diagrams in math and science, and this learned
automaticity at least partially explains continual success on math and
science tasks. Both of these examples highlight the educational possi-
bilities of tapping into low-level processes and making required tasks
automatic in order to improve math and science performance.

In sum, there are a small number of studies that provide evidence for
the idea that automatic bottom-up processes can influence student learn-
ing and answering on science and math questions. Some of these studies
used other modes of measurement such as response time and nonverbal



250 Andrew F. Heckler
responses that can help to support the claim that automatic processes are
involved. In the next section, I will describe how a large class of science
questions involve competing dimensions, and automatic bottom-up pro-
cesses may at least partially cause the known misconception-like answer-
ing patterns to these questions.
7. THE PHENOMENON OF COMPETITION IN SCIENCE QUESTIONS
Section 5 described an example in which competing relevant and
irrelevant information (from the perspective of an expert) was present in a
science question, and many students consistently based their answer on
the irrelevant information. In this section, I will discuss in more detail the
phenomenon of competition between relevant and irrelevant information
in science questions, and the outcomes of this competition as mediated by
the low-level mechanisms of relative processing time and allocation of
attention. The phenomenon of competition in science questions and its
role inmisconception-like answering patterns is described in three points:

First, it is assumed that students may consider—either implicitly or
explicitly—a number of dimensions (e.g., variables or features) when
answering science questions. I would like to emphasize that the dimen-
sions considered by a novice are not always the same dimensions consid-
ered by an expert. Novice students may utilize dimensions not scientif-
ically valid according to experts because the students may nonetheless
perceive these dimensions as relevant. For example, when determining
the period of a pendulum, many students may consider both the mass and
length of the pendulum (see Figure 3), yet only the length is scientifically
relevant.
[(Figure_3)TD$FIG]

Figure 3 Examples of physics questions with competing dimensions. The indicated
student response percentages were collected in pilot studies, withN > 40 in for each
question.
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Second, I propose that for a significant number of science questions,
competition between relevant and irrelevant dimensions in a question
plays a significant role in incorrect answering patterns. To illustrate
the pervasiveness of this phenomenon, Figures 1 and 2 as well as
Table 1 present a few examples of competing relevant and irrelevant
dimensions for questions that have well-known misconception-like
answering patterns. It would not be difficult to provide dozens of such
examples. Note that collaborators and I have conducted interviews with
some students answering these questions to support the validity of the
questions.

Third, I propose that well-known mechanisms may at least in part
predict and explain the outcomes of competition and the resulting pat-
terns of student answers. These mechanisms are discussed in the next
section. It is important to note that we are not explaining the cause of
competition itself. Rather, we will help to explain and predict the outcome
of two competing dimensions.
7.1. Relative processing times of relevant and irrelevant
dimensions

I would like to consider the hypothesis that, when there are competing
plausible dimensions upon which to base an answer for a given science
question, students tend to choose the dimension that is processed thefastest.
This hypothesis is somewhat similar to the fast heuristic model of ‘‘take
the best,’’ which chooses the first discriminating attribute to make a
decision (e.g., Gigerenzer & Goldstein, 1996; see also Bergert &
Nosofsky, 2007). Note that the dimensions of interest need only to be
plausible from the perspective of the student; thus, both relevant and
irrelevant dimensions may compete.

This hypothesis stems from evidence that if there is competition
between relevant and irrelevant information in a question, then the
outcome can be influenced by the relative time to process the relevant
and irrelevant dimensions. Perhaps the best known method demonstrat-
ing this phenomenon is the Stroop effect (e.g., MacLeod, 1991), though
the story likely also involves the more general concept of automaticity of
processes (Cohen, Dunbar, & McClelland, 1990; Macleod & Dunbar,
1988). The Stroop effect occurs when a well-learned cue that is techni-
cally irrelevant to a task nonetheless competes with the relevant cues and
interferes in task performance. The classic example is the color-word task,
for example, spelling out the word ‘‘blue’’ in red-colored letters and
asking participants to name the color of the letters (see Figure 4).
Accuracy is typically lower and response times higher when the color
of the letters conflicts with theword compared towhen the color matches
the word. Furthermore, the interfering dimension (word) is typically
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processed with similar or shorter times than the relevant dimension
(color).

Some physics questions can be considered similar to the Stroop task in
that they have two competing dimensions that in some cases lead to
conflicting answers and in other cases lead to the same answer. For
example, consider the well-known difficulties students have in answering
questions about graphs (Beichner, 1994; McDermott, Rosenquist, & van
Zee, 1987; Mokros & Tinker, 1987). Students often interpret graph as a
physical picture and there is a general confusion about the meaning of
height and slope of a graph. In particular, when students are presented
with a position versus time graphs for an object (see Figure 4) and asked,
‘‘At which point does the object have a higher speed?’’ many incorrectly
answer according to the higher point (incorrect) rather than the greater
slope (correct) (McDermott et al.). The graph questions in Figure 4 ask
students to compare the speeds (i.e., slopes) at two points on a graph. For
this question, the relevant dimension is slope and the irrelevant dimension
is height. One may construct graphs in which the higher point has the
higher slope (aligned) or when the higher point has the lower slope
(conflicting). Students will often consistently choose the higher point
in both cases, basing their answers on the irrelevant dimension of height
rather than slope. Consequently, one finds that many students answer the
aligned questions correctly and the conflicting question incorrectly
(Heckler, Scaife, & Sayre, 2010).

Let us now consider the previously mentioned hypothesis that, among
competing plausible dimensions, students tend to choose the dimension
[(Figure_4)TD$FIG]

Figure 4 Analogy between a physics question and the Stroop task. Both involve
competing dimensions (word vs. color, or height vs. slope), with faster times or
higher accuracy for the aligned case.
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that is processedthefastest. For the example of the graph question above, the
hypothesis would predict that since height is often preferred over slope,
height is processed inherently faster than slope.

In a recent study, collaborators and I confirmed the predictions of this
hypothesis (Heckler & Scaife, 2010; Heckler et al., 2010). In this study
(see Figure 5), we used response time as a proxy for processing time, and in
speeded comparison task, we found that students could compare the
heights of two points significantly faster than the slopes of two points.
Furthermore, we found students, as expected, often consistently choose
the point with the higher value than the point with greater slope. Perhaps
most interestingly, we found that when a short (3 s) delay is imposed on
answering, long enough for student to process both dimensions, the
students’ accuracy significantly improved. Thus, the students were capa-
ble of answering correctly, but instead they tend to answer quickly, and it
may be this preference for answering quickly that drives students to
choose the dimension that is processed the fastest.

It is worth noting that the above study also found that students
answering incorrectly also answered faster. Thus, there is more than
just patterns to the response content; however, there are also patterns to
the response times. Response times on questions have been investigated
in the past to eliminate the effect of guessing, thus improving the
accuracy of the tests (Bridgeman et. al, 2004; Schnipke & Scrams,
[(Figure_5)TD$FIG]

Figure 5 Competition via different processing times of relevant and irrelevant
dimensions. Similar to the kinematics graph in Figure 3, the question above (figure
left) elicits slope–height confusion in students. For the question above, the electric
field is proportional to the slope of the line.Nonetheless, 55% of students consistently
chose the higher point (incorrect) rather than the higher slope (correct). A separate
speeded comparison experiment demonstrated that students inherently compare
heights faster than slopes, supporting the idea that students might simply be
choosing the faster processed dimension. In addition, we found that by imposing a
3-s delay on answering, time enough to process both height and slope, the proportion
of correct responses increased (figure right). This supports the idea that students can
answer correctly, but instead they tend to answer quickly (Heckler, Scaife, & Sayre,
2010).
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1997; van der Linden, 2008), or to detect cheating (van der Linden &
van Krimpen-Stoop, 2003). However, for the questions used in this
study, students answered in patterned ways, and thus they are not
guessing (e.g., see Heckler et al., 2010).

In sum, some patterns in responses to science questions may arise from
lower level implicit decision criteria (e.g., answer quickly) rather than
from some higher level conceptual understanding. The influence of this
lower level process can be significant enough to mask a student’s overall
ability to determine the correct answer. The hypothesis that students will
tend to base their answer on the plausible information that is processed the
fastest makes testable predictions about response times as well as response
choices. Not only is there some existing evidence to support this hypoth-
esis, but there are also many possibilities of testing it further by designing
experiments that include the capture of response time data as well as
response choice data.
7.2. High salience of irrelevant cues: attentional learning

Competition can also be manifested in terms of allocation of attention.
When two or more cues are present, it is often the case that one of them
captures most of the attention. This phenomenon of cue competition is
fundamental to a wide range of learning and behavior. For example,
decades of studies in category learning have identified two major factors
that determine which cues are learned and which are ignored among a
multitude of competing cues in the environment: learners tend to learn
cues that are relatively salient, predictive, or both (e.g., see Edgell, Bright,
Ng, Noonan, & Ford, 1992; Hall, 1991; Trabasso & Bower, 1968). There
are a number of successful models that can explain the trade-off between
the salience and predictiveness of a dimension in terms of learnedattention
(e.g., Kruschke, 2001; Mackintosh, 1975). In our recent work, collabora-
tors and I have provided evidence that when low-salient cues repeatedly
compete with high-salient cues, the low-salient cues are learned to be
ignored, even if they are more predictive than the high-salient cues
(Heckler, Kaminski, & Sloutsky, 2008; 2011). This learned inattention to
low-salient yet predictive information may contribute to the students’
difficulties in correctly answering science questions and learning science
concepts.

How can attentional learning lead to incorrect answering on science
questions? Science concepts involve highly predictive cues, but these
predictive cues can be of relatively low salience. For example, the accel-
eration of an object uniquely predicts the net force on that object, yet
acceleration is often less salient than velocity (e.g., Schmerler, 1976), and
students often infer the net force on an object from the velocity of the
object rather than its acceleration (e.g., Clement, 1982; Halloun &
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Hestenes, 1985). Thus, people’s natural preference for attending to more
salient cues can be problematic in science learning and performance,
because these more salient cues may prevent attention to more predictive
but less salient cues.

From this perspective, it is reasonable to expect that answering patterns
to science questionsmay be strongly influenced by the format (i.e., surface
features) of the question itself. This is reminiscent of a study by Chi et al.
(1981), who found that novices tend to be distracted by surface features of
questions rather than the underlying structure.

Therefore, I would like to consider the hypothesis that many students
may simply base their response on the most salient and plausibly relevant
features of a science question, even if these salient features may in fact be
unrelated or contrary to the relevant scientific concept. With several
competing features, the most salient one tends to automatically capture
attention, with little opportunity for alternative less salient features to be
considered.

For example, Figure 6 presents two questions that are based on the
slope–height confusion on graph questions mentioned earlier. After rel-
evant instruction, introductory undergraduate physics students were
shown the above position versus time graphs of two cars and asked,
‘‘When are the speeds of the cars the same?’’ The speeds are the same at
the time(s) when the slopes are the same. The score for the graph with the
parallel lines is near perfect, presumably because the sameness of the slopes
of the lines captured the attention. In this case then, attention was given to
the relevant dimension of slope. However, for the crossed-lines graph,
many students chose the time at which the lines intersected, presumably
because this point captures attentionmore than the time at which the lines
[(Figure_6)TD$FIG]

Figure 6 Hypothesized manipulation of attention on kinematics graph questions.
For these questions, only the slopes of the lines at any given point are relevant, the
relative heights (i.e., values) of the point on lines are irrelevant. In the parallel line
graphs, almost all students answered ‘‘correctly’’ presumably allocating most
attention to the fact that the slopes of the lines are equal. However, in the crossed
line graph, many students presumably allocated most attention to the point at which
the lines cross (values are equal).
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have the same slope. Therefore, this is consistent with the hypothesis that
students answer according to the features of the question that capture the
most attention. In the case of the crossed lines, the irrelevant dimension of
the values of the lines captured attention and led many students to the
incorrect response.

One advantage of the hypothesis that bottom-up attentional allocation
can play a role in incorrect answering patterns is that it can potentially be
measured and tested independent of student response choices. For exam-
ple, one can operationally define overt eye gaze (as measured by an eye
tracker) as a measure of attention (cf. Rehder & Hoffman, 2005).
Specifically, the dimension that results in the first and longest fixations
is considered as the one capturing the most attention (and is the most
salient). In the example in Figure 6, one would expect, for example, that
attention would be fixed on the intersection of the lines on the second
graph.

Note that the term salience is used in many contexts, and it is important
to use the term consistently. Informally speaking, the salience of a cue or
dimension is usually defined as the quality of standing out or being more
noticeable compared to other cooccurring dimensions. Salience is often
more formally regarded empirically as a quality of a cue or dimension that,
separate from relative predictiveness, affects attention to (e.g., Kim &
Cave, 1999; Lamy, Tsal, & Egeth, 2003) and the learning of (e.g.,
Edgell et al., 1992; Hall et al., 1977; Kruschke & Johansen, 1999;
Trabasso & Bower, 1968) a cue relative to other present cues.
Therefore, one may operationally define salience in a number of ways.
For example, one may define the salient dimension as the one that attracts
the most attention, as measured by eye tracking.

It is also important to keep in mind that the attention to a cue or
dimension depends on the context. For example, the relative attention to
two given cues can depend on the presence or absence of other cues; thus,
changing the perceptual or conceptual format of the context may change
the relative attention to two cues. Furthermore, attention (or salience)
depends on bottom-up mechanisms operating at the level of perceptual
features as well as on top-down mechanisms operating at the level of
cognitive strategies, for example, controlling a search task (e.g., Egeth
& Yantis, 1997). Therefore, our measures of relative attention to specific
dimensions should be regarded as specific to particular questions and tasks.
Nonetheless, the mechanism of attention to salient dimensions and its
possible effect on student answering is general.

In a number of recent studies on enhancing multimedia learning, eye
tracking results have shown that participants are distracted by irrelevant
features and tend to look at more relevant areas of diagrams after instruc-
tion (Canham&Hegarty, 2010) and at relevant areas of animations if they
are highlighted (Boucheix & Lowe, 2010), or if they are experts (Jarodzka,
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Scheiter, Gerjets, & Van Gog, 2010). Nonetheless, more studies are
needed that specifically focus on expert and novice attention to relevant
and irrelevant features in physics problems known to elicit misconcep-
tion-like responses. That is, the irrelevant features are more than just
randomly distracting. Theremay be previously learned attention to incor-
rect dimensions that must eventually be overcome. An example of a
related study is a study on spatial visualization ability and physics problem
solving ability by Kozhevnikov, Motes, and Hegarty (2007) who found
that students who made ‘‘graph-as-picture’’ misconception-like descrip-
tions tended to look at the axes less than those students who accurately
describe kinematics graphs questions; however, the eye tracking datawere
more ambiguous about differences between students looking at the lines
in the graphs.

In sum, salient yet scientifically irrelevant features of a question com-
pete for attention with less salient yet relevant features, and this may play
an important role in incorrect student answering patterns. One may be
able to observe the potential role of allocation of attention in the answer-
ing of science questions by measuring attention via eye tracking during
the course of responding to question tasks. Since allocation of attention is
controlled by both bottom-up and top-down processes, the challengewill
be designing experiments to separate out these two kinds of processes in
order to determine the extent towhich automatic attentional mechanisms
may be influencing response choices. Furthermore, there are a number of
models of attention and attentional learning that may be applicable to
misconception-like answering and may offer ways to test such models.
8. SUMMARY AND GENERAL DISCUSSION
Why do people often answer simple scientific questions incorrectly
in regular, patterned ways? This simply posed, powerful question is the
driving force behind this chapter. It is one of those simple yet deeply
important questions found in science like ‘‘what makes stars shine?’’ or
‘‘what causes cancer?’’ It is a question that can lead to a deeper under-
standing of how people think and learn and how they interact with the
world.

While there is general agreement on the existence of patterns of
incorrect answering to science concept questions, there is less agreement
about the causes of such patterns. The phenomenon of answering patterns
is certainly notmonolithic and likely arises from a number of mechanisms.
As discussed in Section 2, a critical issue about incorrect answering
patterns is that a cause for the patterns must first be assumed in order to
identify a practically relevant pattern, and then it must be based on
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similarities in questions perceived by the answerer rather than the expert
who poses them.

In the field of science education, prevalent explanations for incorrect
answering patterns have focused on high-level mental structures, such as
misconceptions and explicit thinking. These explanations have been
useful for instruction, but they have very limited predictive power. This
lack of predictive power is largely due to the lack of specific models and
mechanisms. Furthermore, while these explanations do not exclude the
possible influence of automatic, bottom-up processes, they rarely explic-
itly include them.

On the other hand, in the field of cognitive science, patterns of
incorrect answering on a variety of tasks both inside and outside the
domain of science have also been a major empirical driving force for
investigations in areas such as category learning, language learning, rea-
soning, decision making, and judgment. However, in these cases, models
explaining the patterns of answers often include either (or both) implicit
or explicit processes, and this approach has yielded some specific predic-
tive models that have demonstrated some success.

Therefore, in this chapter, the potential role of bottom-up processes
in incorrect answering patterns to science questions was explored. In
particular, the phenomenon of competition was investigated as it relates
to the answering of science questions because this phenomenon high-
lights the limitations of high-level mental structure models and the
need for bottom-up mechanisms to explain patterns of incorrect
answering.

Two examples of bottom-up mechanisms that can predict the out-
come of competing dimensions were examined: relative processing
time and allocation of attention to relevant and irrelevant dimensions.
First, it is hypothesized that students tend to choose the dimension that
is processed the fastest. Second, it is hypothesized that students tend to
choose the dimension that captures the most attention (and is plausibly
relevant). While specific examples of each mechanism were discussed, it
still remains an open question as to how these two mechanisms may be
related or interact. Data on response choices supported the predictions
of the two mechanisms. For the processing time mechanism, patterns in
data of the response times also supported the hypothesized mechanism.
Therefore, one advantage to this proposed mechanism is that it makes
testable predictions on response measures in addition to the response
choice.
8.1. The relevance to science education

The multiple choice questions discussed here, as well as many of the
questions used in research on science misconceptions, are similar to
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science questions commonly found in textbooks and classroom tests. The
fact that responses to these questions may be strongly influenced by
automatic bottom-up processes in many students has double-edged
implications. First, it calls into question the presumed validity of these
questions, since they were meant to test the extent towhich students have
explicit understanding of a particular scientific concept. However, these
and similar questions, such as those used on well-vetted concept inven-
tories, (e.g., Ding, Chabay, Sherwood, & Beichner, 2006; Hestenes,
Wells, & Swackhammer, 1992), have often been validated through student
interviews to ensure that the large majority of students can explicitly
explain their answer choice. That is to say, these multiple choice questions
do often reflect students’ explicit understanding as interpreted by their
explanations.

Therefore, the second implication of the influence of bottom-up
processes on answering patterns is to call into question what is meant
by understanding of a concept. Any claim about ‘‘student understanding’’
or ‘‘what a student is thinking’’ can only be operationally defined by or
inferred from student performance on a task, be it the response to an
informal question in class, to a multiple choice question on a test, or the
success on a semester-long group project. If, as is suggested in this
chapter and in the work on dual systems discussed in Section 6, the
performance on these tasks is inevitably influenced by unconscious,
automatic, bottom-up processes, then our understanding of understand-
ing a science concept must include both explicit reasoning and automatic,
bottom-up processes. One might say that both ‘‘System 1’’ and ‘‘System
2’’ are a necessary part of what we operationally mean by understanding
a science concept, as they both may influence performance on any task
relevant to the science concept. Indeed, a significant portion of expert
science knowledgemay be implicit (cf. Evans, Clibbins, Cattani,Harris, &
Dennis, 2003).

If bottom-up processes do play an important role in understanding
of a science concept, then this suggests that one should utilize methods
of instruction that align these process with goals of explicit reasoning
(cf. Brace et al., 2006; Goldstone et al., 2010; Kellman et al., 2010). For
example, students may be better able to understand the meaning of
tangent slopes on a graph if they can process them as quickly as positions
on a graph. Or if one is to reason that velocity is not in the direction of
force, this may be facilitated if such examples were highly available in
memory due to repeated practice examples.

The goal of this chapter was to investigate the potential role of auto-
matic, bottom-up processes in the well-known phenomenon of patterns
of incorrect answering to science concept questions. It seems clear that
bottom-up processes can play an important role in student answering, and
disregarding such processes risks ignoring a plausible opportunity to
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improve our understanding of learning and understanding of scientific
concepts.
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