
VOLUME 76, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JANUARY 1996

10

rder
l, we
litude
our

lously

180
Nonperturbative Effects on Nucleation
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A nonperturbative correction to the thermal nucleation rate of critical bubbles in a first-o
phase transition is estimated. Using a simple model of a scalar field in a double-well potentia
obtain a corrected potential which incorporates the free-energy density available from large-amp
fluctuations, which is not included in the usual perturbative calculation. As an application of
method, we show how these corrections can both qualitatively and quantitatively explain anoma
high nucleation rates observed in 2D numerical simulations.
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Although the simplest first-order phase transitions a
characterized by a discontinuous jump of a scalar ord
parameter between two distinct phases, they do not
proceed in the same way [1]. For very strong first-ord
phase transitions, where the free-energy barrier betwe
the phases is large, the transition is initiated by the n
cleation of critical-sized bubbles of the new phase in th
background of the metastable (e.g., supercooled) old pha
By definition, these critical bubbles are just large enou
to overcome their surface tension and grow, eventua
converting the whole medium to the new phase. T
large barrier between the two phases suppresses la
amplitude thermal fluctuations of the order parameter;
initial metastable state is well defined, as no fraction
the volume is in the new phase before the transition o
curs. In this case, the metastable phase can be rega
as “homogeneous,” as only very small-amplitude therm
fluctuations are present. This is the situation described
Langer’s theory of homogeneous nucleation [2], or, in th
context of relativistic quantum field theories, by the wor
of Coleman and Callan [3].

Besides the decay of the “near-homogeneous” me
stable state described by nucleation theory, one can inv
tigate the evolution of an unstable initial state which
characterized by considerable phase mixing. Within t
context of condensed matter systems, this situation cor
sponds to a quench within the unstable “spinodal” region
the two-phase diagram. In this case, the two phases se
rate by the mechanism known as “spinodal decompo
tion”; small-amplitude, long-wavelength fluctuations grow
exponentially fast, forming domains of the two phase
which will eventually coarsen, as the system approach
its final equilibrium state.

In this Letter we will address the dynamics of phas
transitions characterized by an initial state which lie
within the “grey zone” between homogeneous nucleati
and spinodal decomposition. Looking at the whole “spe
trum” of first-order phase transitions, from very strong t
very weak, it is clear that the amount of phase mixing
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the initial state will strongly influence the dynamics of th
transition. However, the standard method of calculati
the nucleation rate employs Gaussian perturbation theo
which is valid only for small-amplitude fluctuations [4]
For strong transitions this approximation is valid. But fo
weaker transitions, large-amplitude fluctuations are mo
abundant, and can have an important effect. Our g
is to present an approximate method by which the pr
ence of large-amplitude fluctuations is consistently inco
porated into the calculation of nucleation rates. Thus,
are implicitly assuming that we are close enough to t
regime described by homogeneous nucleation that we
still distinguish between the two low-temperature phase

Large-amplitude thermal fluctuations will be modele
by the so-called subcritical bubble method [5]. Recent r
sults [6] have shown that modeling the dominant fluctu
tions by subcritical bubbles is in excellent agreement w
3D simulations [7]. The model utilizes the fact that alon
with the nucleation of critical bubbles in the metastab
phase, smaller size, though still large-amplitude, “subcr
cal” bubbles will also be nucleated (and in much grea
number because they have a lower free energy). Th
bubbles by definition will always shrink and eventually dis
appear, but there will always be some nonzero equilibriu
number densitynsb at a given temperature. Their presenc
may lead to large corrections on nucleation rates.

To begin, let us consider the standard model of a pha
transition, in which the order parameter is a real scalar fie
f, which has a quartic double-well potential of the form

V sfd ­
1
2 m2f2 2

1
6 gf3 1 hf4y24 . (1)

This potential has two minima, one atf ­ 0 and one at
f ­ f1, which represent the two phases of the syste
It can be thought of as the homogeneous part of a typi
phenomenological Ginzburg-Landau coarse-grained fr
energy density (the cubic term can always be made i
a linear term), or as some effective potential where ad
tional degrees of freedom coupled tof have been inte-
grated out. Our analysis will be purely classical, valid fo
© 1996 The American Physical Society
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T ¿ m, wherem is the mass of the low-energy meson
excitations in the associated quantum theory. All releva
field configurations contain many quanta.

We would like to incorporate the free-energy density a
sociated with large-amplitude, nonperturbative fluctuatio
into the computation of the decay rate. In the spirit of th
renormalization group approach, this should be equival
to an effective “coarse graining” of the classical potentia
averaging over these large-amplitude fluctuations will le
to a shift in the background free-energy density and dec
barrier, which in principle can be translated into a change
the bare couplings of the model. We can understand h
to estimate the effective coarse graining by first studyi
the thin-wall limit of critical bubble nucleation.

In the standard theory, which neglects phase mixin
the nucleation rateG is proportional toe2FcbyT , where
Fcb is free energy needed to form a critical bubble
the metastable background. For an arbitrary thin-wall
spherical bubble of radiusR and amplitudefthin & f1,
where thin walled means the radiusR is much greater than
the bubble wall thickness, the free energy of the bubb
takes the well-known form [8]

FthinsRd ­ 4pR2s 2 s4py3dR3DV . (2)

Physically, the first term is the energy it costs to form th
bubble wall, wheres ; 1

2

R
dr s≠fy≠rd2 is the surface

tension. The second term is the energy “gained”
converting a spherical volume of the metastable phase i
the lower energy phase. Therefore,DV is defined as the
difference in free-energy density between the backgrou
medium and the bubble’s interior. Sincefthin & f1, for
a homogeneous background (metastable) we can write

DV0 ­ V s0d 2 V sf1d . (3)

If there is significant phase mixing in the backgroun
metastable state, its free-energy density is no longerV s0d.
One must also account for the free-energy density of
nonperturbative, large-amplitude fluctuations. Since the
is no formal way of deriving this contribution outside
improved perturbative schemes, we propose to estim
the corrections to the background free-energy density
following another route. We start by writing the free
energy density of the metastable state asV s0d 1 Fsc,
whereFsc is the nonperturbative contribution to the free
energy density due to the large-amplitude fluctuation
which we assume can be modeled by subcritical bubbl
We will calculateFsc further below.

We thus define the effective free-energy differen
DVcg, which includes corrections due to phase mixing,

DVcg ­ DV0 1 Fsc , (4)

which is the sum of the free-energy difference calculat
in the standard way [Eq. (2)], and the “extra” free-energ
density due to the presence of subcritical bubbles. Hen
forth, the subscript “cg” will stand for “coarse grained.”

We note that while we have made a correction toDV ,
we have not made any corrections to the surface tens
s. Since we are considering the thin-wall limit, as lon
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askfl is small, which is true if subcritical bubbles do no
occupy a large fraction of space, the correction tos will
be subdominant. (Note that the presence of subcriti
bubbles may shiftkfl by roughly

P
i e2FiyT fi, wherefi

is the amplitude of a given fluctuation, andFi its associated
free energy.) Thus, the arguments here give a lower bo
on the magnitude of the corrections. Later on, both volu
and surface corrections will be automatically included
the calculation.

Since a critical-sized bubble is defined as the bub
for which all forces on the bubble wall cancel, i.e
≠Fy≠RjRcb ­ 0, we can use Eq. (2) to obtain both th
free energy needed to form a thin-wall critical bubble in
background with subcritical bubbles, and the radius

Fcb ­
2p

3
R3

cbsDV0 1 Fscd , Rcb ­
2s

DV0 1 Fsc
.

(5)
Equation (5) warrants several comments. First, in the lim
of a very strong phase transition, subcritical bubbles
suppressed (Fsc ! 0), and bothFcb andRcb approach the
standard homogeneous background expressions. Sec
Fsc acts in the same way as the free-energy differen
DV0. The presence of subcritical bubbles is equivale
to extra free energy in the medium, which enhances
nucleation of critical bubbles. In particular, for potentia
near degeneracy such thatDV0 & Fsc, the nucleation rate
G , e2FcbyT can bemuchgreater than in the case ignorin
the presence of subcritical bubbles.

Finally, notice that asDV0 ! 0 neither the critical-
bubble energy nor its radius become infinite. For tempe
ture dependent potentials which (ignoring the correctio
from subcritical bubbles) are degenerate at the critical te
peratureTc, the nucleation rateG , e2FcbyTc is finite. In
fact, the nucleation rate of critical bubbles may be nonze
evenabovethe critical temperature (again, using the u
corrected expression for the potential). This is a testa
prediction of our method which, of course, is sensitive
the equilibrium number density of subcritical bubbles.

This final comment suggests an important point. Sin
for degenerate potentials (temperature dependent or
no critical bubbles should be nucleated, taking into a
count subcritical bubbles must lead to a change in
coarse-grained free-energy density (or potential) desc
ing the transition. Thus, it should be possible to tran
late the “extra” free energy available in the system due
the presence of subcritical bubbles in the background i
a corrected potential for the scalar order parameter.
will write this corrected potential asVcgsfd.

The standard coarse-grained free energy is calcula
by integrating out the short-wavelength modes (usua
up to the correlation length) from the partition function o
the system, and is approximated by the familiar form [9

Fcg ­
Z

d3r f 1
2 s=fd2 1 Vcgsfdg . (6)

How do we estimateVcg? One way is to simply con-
strain it to be consistent with the thin-wall limit. Tha
181
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is, asVcgsfd approaches degeneracy [i.e.,DVcgsfd ! 0],
it must obey the thin-wall limit of Eq. (4). Note that
with a simple rescaling, the potential of Eq. (1) can b
written in terms of one free parameter. Thus, the thi
wall constraint can be used to express the corrected va
of this parameter in terms ofFsc in appropriate units.
The free energy of the critical bubble is then obtaine
by finding the bounce solution to the equation of motio
=2f 2 dVcgsfdydf ­ 0 by the usual shooting method
and substituting this solution into Eq. (6).

Therefore, in order to determineVcg, we must first
calculate the free-energy densityFsc of the subcritical
bubbles. As a first step, we follow the work of Ref. [6] to
obtain the equilibrium number densitynsb of subcritical
bubbles. If we define the distribution functionf ;
≠2nsby≠R ≠fA, then fsR, fA, tddR dfA is the number
density of bubbles with a radius betweenR andR 1 dR
and an amplitude betweenfA and fA 1 dfA at time t.
It satisfies the Boltzmann equation

≠fsR, fA, td
≠t

­ 2 jyj
≠f
≠R

1 s1 2 gdG0!1

2 fV Gtherm 2 gG1!0 . (7)
The first term on the right-hand side is the shrinking ter
(note thaty ­ ≠Ry≠t is negative), the second term is
the nucleation term whereG is the nucleation distribu-
tion function, which is defined byG ­

R
dR df G, and

G0!1 is the nucleation rate per unit volume of subcrit
cal bubbles from the “0” phase (the initial phase) to th
“1” phase. The division of the system into two phase
depends on the particular application at hand, as will
clear in the example below. By the Gibb’s distribution
G0!1 ­ Ae2Rcb sR,fAdyT , whereA is a constant indepen-
dent ofR andf.

The factorg is defined as the fraction of volume in
the1 phase, and is obtained by summing over subcritic
bubbles of all amplitudes within this phase. The thir
term is a phenomenological thermal destruction term (s
Ref. [5]), whereV is the volume of a bubble of radiusR,
Gtherm ­ aTyV , anda is a constant. The fourth term is
the inverse nucleation term. For more details about th
Boltzmann equation, see Ref. [6], which has improve
upon the work of Gelmini and Gleiser [5].

The free energy of the subcritical bubbles is determin
by modeling them as Gaussian fluctuations with amp
tudefA and radiusR such thatfscsrd ­ fAe2r2yR2

. The
free energy of a given configuration can then be foun
by using the general formulaFsc ­

R
d3r f 1

2 s=fscd2 1

V sfscdg. Although this approach only includes one pa
ticular shape out of all possible field configurations, th
agreement between theory and numerical experiments
dicates that the Gaussian profile is an adequateansatzfor
the dominant large-amplitude thermal fluctuations.

The equilibrium number density of subcritical bubble
is found by solving Eq. (7) with≠fy≠t ­ 0, imposing
the physical boundary conditionfsr ! `d ­ 0. Once we
know the distribution function and free energy for a bubb
182
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of a given radiusR and amplitudefA, we can estimate the
total energy density of the Gaussian subcritical bubbl
summed over all relevant radii and amplitudes. We c
write, in general,

Fsc ø
Z `

fmin

Z Rmax

Rmin

Fsb
≠2nsb

≠R ≠fA
dR dfA , (8)

where fmin defines the lowest amplitude within the1
phase, typically (but not necessarily) taken to be the ma
mum of the double-well potential.Rmin is the small-
est radius for the subcritical bubbles, compatible with t
coarse-graining scale. For example, it can be a lattice c
off in numerical simulations, or the mean-field correlatio
length in continuum models. As forRmax, it is natural to
choose it to be the critical bubble radius.

As an application of the above method, we will inve
tigate nucleation rates in the context of a 2D model f
which accurate numerical results are available [10]. T
will allow us to compare the results obtained by incorp
rating subcritical bubbles into the calculation of the dec
barrier with the results from the numerical simulations.

The 2D scalar potentialV sfd is given in Eq. (1). Fol-
lowing the rescaling of Ref. [10], the potential can be wr
ten in terms of one dimensionless parameterl ; m2hyg2,

V sfd ­
1
2 f2 2

1
6 f3 1 lf4y24 . (9)

This double-well potential is degenerate whenl ­ 1y3.
As argued before, we find the new coarse-grained pot

tial Vcg (or, equivalently,lcg) by constraining it to agree
with the thin-wall limit. Simple algebra from Eqs. (4) an
(9) yields, to first order in the deviation from degenerac

lcg ­ l 2 F̃scy54 , (10)

whereF̃sc ­ sg2ym6dFsc is the dimensionless free-energ
density in subcritical bubbles. The new potentialVcg is
then used to find the bounce solution and the free ene
of the critical bubble.

The calculation ofFsc in two dimensions is fairly
straightforward. Close to the thin-wall limit (i.e.
G0!1 ø G1!0 ; G), one can analytically solve the equ
librium Boltzmann equation for the density distributio
function, obtaining fsR, fA, Td ­ s1 2 2gdWT sR, fAd,
wheresy ; jyjd

WT sR, fAd ­
Ayy

2
exp

∑
2

a

T
1 RT sayyd 1

sayyd2T 3

4b

∏
3

s
pT
b

Ω
1 2 erf

∑s
b

T

µ
R 1

sayydT2

2b2

∂∏æ
,

(11)

and we wrote the free energy of a given subcritical config
ration asFsb ; a 1 bR2, with a ­ pf

2
Ay2, andb ­

as 1
2 2

1
9 fA 1 lf

2
Ay48d. Likewise, g ­ IT ys1 1 2IT d,

where IT ­
R`

fmax

RRmax

Rmin
pr2WT dr df. The radial inte-

gration can be done analytically, although the result
not particularly illuminating. The integral over amplitude
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FIG. 1. Comparison of the decay barrier as a function ofl
with and without the inclusion of subcritical bubbles, at fixe
temperatures.

must be done numerically. We then substitutefsR, fA, T d
andg into Eq. (8) to finally findFscsl, T , Ayy, ayyd.

Figure 1 illustrates the effect of subcritical bubbles o
the nucleation barrier for constant values of the tempe
ture. The temperatures are chosen to be within the ran
used in the 2D simulation. The constantA was fixed at
A ­ 0.1, consistent with the measurements of Ref. [10
Notice that the presence of subcritical bubbles greatly d
creases the barrier as the potential approaches dege
acy sl ! 1y3d. However, for small temperaturesT ,

10m4yg2, the correction becomes negligible.
In Fig. 2 we show that the calculation of the nucle

ation barrier including the effects of subcritical bubbles
consistent with data from lattice simulations, whereas t
standard calculation overestimates the barrier by a la
margin. In fact, the inclusion of subcritical bubbles pro
vides a reasonable explanation for the anomalously h
nucleation rates observed in the simulations close to d
generacy. The error bars are from the numerical me
surements of the barrier; for larger values ofl, higher

FIG. 2. Comparison between numerical data and theoreti
predictions for the decay barrier with and without the inclusio
of subcritical bubbles.
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temperatures had to be used to attain nucleation, incre
ing the error in the barrier measurements. However,
note that even with the large error bars the data are
consistent with the theoretical predictions for the barrie
while the corrected barrier values fall within the error ba
for a wide range of parameters. We note that data fro
1D simulations also show the same behavior as the dat
Fig. 2 [10]. Simulations in 3D are in progress, and wi
enable us to test this method in more detail.

Finally, we stress that the inclusion of nonperturbativ
corrections through the definition of an effective, coars
grained, coupling may have several consequences not o
to the nucleation rate of first-order transitions, but al
to their dynamics. Clearly, once we have a correct
potential, quantities such as the critical temperature,
amount of supercooling, the bubble-wall velocities, an
the completion time for the transition will change. Thi
opens up several possible applications of this method, fr
laboratory studies of nucleation to cosmological pha
transitions.
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