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A nonperturbative correction to the thermal nucleation rate of critical bubbles in a first-order
phase transition is estimated. Using a simple model of a scalar field in a double-well potential, we
obtain a corrected potential which incorporates the free-energy density available from large-amplitude
fluctuations, which is not included in the usual perturbative calculation. As an application of our
method, we show how these corrections can both qualitatively and quantitatively explain anomalously
high nucleation rates observed in 2D numerical simulations.

PACS numbers: 98.80.Cq, 64.60.Cn

Although the simplest first-order phase transitions arehe initial state will strongly influence the dynamics of the
characterized by a discontinuous jump of a scalar ordetransition. However, the standard method of calculating
parameter between two distinct phases, they do not athe nucleation rate employs Gaussian perturbation theory,
proceed in the same way [1]. For very strong first-ordemhich is valid only for small-amplitude fluctuations [4].
phase transitions, where the free-energy barrier betwedfor strong transitions this approximation is valid. But for
the phases is large, the transition is initiated by the nuweaker transitions, large-amplitude fluctuations are more
cleation of critical-sized bubbles of the new phase in theabundant, and can have an important effect. Our goal
background of the metastable (e.g., supercooled) old phase.to present an approximate method by which the pres-
By definition, these critical bubbles are just large enougtence of large-amplitude fluctuations is consistently incor-
to overcome their surface tension and grow, eventuallporated into the calculation of nucleation rates. Thus, we
converting the whole medium to the new phase. Theare implicitly assuming that we are close enough to the
large barrier between the two phases suppresses largegime described by homogeneous nucleation that we can
amplitude thermal fluctuations of the order parameter; amstill distinguish between the two low-temperature phases.
initial metastable state is well defined, as no fraction of Large-amplitude thermal fluctuations will be modeled
the volume is in the new phase before the transition ocby the so-called subcritical bubble method [5]. Recent re-
curs. In this case, the metastable phase can be regardsults [6] have shown that modeling the dominant fluctua-
as “homogeneous,” as only very small-amplitude thermations by subcritical bubbles is in excellent agreement with
fluctuations are present. This is the situation described b8D simulations [7]. The model utilizes the fact that along
Langer’s theory of homogeneous nucleation [2], or, in thewith the nucleation of critical bubbles in the metastable
context of relativistic quantum field theories, by the workphase, smaller size, though still large-amplitude, “subcriti-
of Coleman and Callan [3]. cal” bubbles will also be nucleated (and in much greater

Besides the decay of the “near-homogeneous” metaaumber because they have a lower free energy). These
stable state described by nucleation theory, one can invebubbles by definition will always shrink and eventually dis-
tigate the evolution of an unstable initial state which isappear, but there will always be some nonzero equilibrium
characterized by considerable phase mixing. Within thenumber density, at a given temperature. Their presence
context of condensed matter systems, this situation correnay lead to large corrections on nucleation rates.
sponds to a quench within the unstable “spinodal” region of To begin, let us consider the standard model of a phase
the two-phase diagram. In this case, the two phases sepansition, in which the order parameter is a real scalar field
rate by the mechanism known as “spinodal decomposiéb, which has a quartic double-well potential of the form
tion”; small-amplitude, long-wavelength fluctuations grow _ 1 2,0 1,3 4
exponentially fast, forming domains of the two phases V(g) = am¢” — 58" + ho"/24. (1)
which will eventually coarsen, as the system approacheghis potential has two minima, one &t = 0 and one at
its final equilibrium state. ¢ = ¢+, which represent the two phases of the system.

In this Letter we will address the dynamics of phaselt can be thought of as the homogeneous part of a typical
transitions characterized by an initial state which liesphenomenological Ginzburg-Landau coarse-grained free-
within the “grey zone” between homogeneous nucleatiorenergy density (the cubic term can always be made into
and spinodal decomposition. Looking at the whole “speca linear term), or as some effective potential where addi-
trum” of first-order phase transitions, from very strong totional degrees of freedom coupled ¢ have been inte-
very weak, it is clear that the amount of phase mixing ofgrated out. Our analysis will be purely classical, valid for
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T > m, wherem is the mass of the low-energy mesonic as{¢) is small, which is true if subcritical bubbles do not
excitations in the associated quantum theory. All relevanbccupy a large fraction of space, the correctiorvtovill
field configurations contain many quanta. be subdominant. (Note that the presence of subcritical
We would like to incorporate the free-energy density asbubbles may shift¢) by roughlyY; e ¥/T ¢;, where¢;
sociated with large-amplitude, nonperturbative fluctuationss the amplitude of a given fluctuation, afdits associated
into the computation of the decay rate. In the spirit of thefree energy.) Thus, the arguments here give a lower bound
renormalization group approach, this should be equivalerdn the magnitude of the corrections. Later on, both volume
to an effective “coarse graining” of the classical potential;and surface corrections will be automatically included in
averaging over these large-amplitude fluctuations will leadhe calculation.
to a shift in the background free-energy density and decay Since a critical-sized bubble is defined as the bubble
barrier, which in principle can be translated into a change iffor which all forces on the bubble wall cancel, i.e.,
the bare couplings of the model. We can understand howF /dR|g, = 0, we can use Eq. (2) to obtain both the
to estimate the effective coarse graining by first studyingree energy needed to form a thin-wall critical bubble in a
the thin-wall limit of critical bubble nucleation. background with subcritical bubbles, and the radius
In the standard theory, which neglects phase mixing, 27 4 20
the nucleation ratd” is proportional toe~#+/7, where ~ Fev = 3~ Rep(AVo + Fi).  Rep = AVo + Fu
F., is free energy needed to form a critical bubble in ‘(5)

the metastable background. For an arbitrary thln'Walquiquation (5) warrants several comments. First, in the limit

spherica! bubble of radiug and ".im.pIiIUde‘ﬁthin =t ofa very strong phase transition, subcritical bubbles are
where thin walled means the radiss much greater than suppressedf. — 0), and bothF,, andR., approach the
the bubble wall thickness, the free energy of the bUbeestandard homogeneous background expressions. Second,

takes the well-known form [€] Fi. acts in the same way as the free-energy difference
Fpin(R) = 4mR*0 — (47 /3)RPAV . (2)  AV,. The presence of subcritical bubbles is equivalent

Physically, the first term is the energy it costs to form thel0 extra free energy in the medium, which enhances the
bubble wall. wheres = %fdr (9¢/9r)? is the surface nucleation of critical bubbles. In particular, for potentials
tension. The second term is the energy “gained” bynear degeneracy such thiv, =< F., the nucleation rate

converting a spherical volume of the metastable phase intb ~ e~"/T can bemuchgreater than in the case ignoring
the lower energy phase. ThereforeV is defined as the the presence of subcritical bubbles.

difference in free-energy density between the background Finally, notice that asAVy — 0 neither the critical-
medium and the bubble’s interior. Sinden, < ¢+, for bubble energy nor its radius become infinite. For tempera-

a homogeneous background (metastable) we can write ture depen_d_ent potentials which (ignoring the cqr.rections
from subcritical bubbles) are degenerate at the critical tem-

AVo = V(0) = V(g+). 3) peratureT,, the nucleation rat& ~ ¢~ /7 is finite. In
If there is significant phase mixing in the backgroundfact, the nucleation rate of critical bubbles may be nonzero
metastable state, its free-energy density is no loWd6).  evenabovethe critical temperature (again, using the un-
One must also account for the free-energy density of theorrected expression for the potential). This is a testable
nonperturbative, large-amplitude fluctuations. Since thergrediction of our method which, of course, is sensitive to
is no formal way of deriving this contribution outside the equilibrium number density of subcritical bubbles.
improved perturbative schemes, we propose to estimate This final comment suggests an important point. Since
the corrections to the background free-energy density bfor degenerate potentials (temperature dependent or not)
following another route. We start by writing the free- no critical bubbles should be nucleated, taking into ac-
energy density of the metastable state V&®) + Fi.,  count subcritical bubbles must lead to a change in the
where F;. is the nonperturbative contribution to the free- coarse-grained free-energy density (or potential) describ-
energy density due to the large-amplitude fluctuationsing the transition. Thus, it should be possible to trans-
which we assume can be modeled by subcritical bubblesate the “extra” free energy available in the system due to
We will calculate F;. further below. the presence of subcritical bubbles in the background into
We thus define the effective free-energy differencea corrected potential for the scalar order parameter. We
AV,y, which includes corrections due to phase mixing, aswill write this corrected potential ag.,(¢).
AVey = AV + Fac, “ The standard coarse-grained free energy is calculated

y integrating out the short-wavelength modes (usually

which is the sum of the free-energy difference calculatecgp to the correlation length) from the partition function of

in the standard way [Eq. (2)], and the “extra” free-energy, ; : o
density due to the presence of subcritical bubbles. Hencérje system, and is approximated by the familiar form [9]

forth, the subscript “cg” will stand for “coarse grained.” Feg = f d3r[%(V¢)2 + Veg(9)]. (6)
We note that while we have made a correctiom\a,

we have not made any corrections to the surface tension How do we estimaté/.,? One way is to simply con-

o. Since we are considering the thin-wall limit, as longstrain it to be consistent with the thin-wall limit. That
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is, asV..(¢) approaches degeneracy [i.&V.(¢) — 0],  of a given radiu®k and amplitudep,, we can estimate the

it must obey the thin-wall limit of Eq. (4). Note that total energy density of the Gaussian subcritical bubbles,
with a simple rescaling, the potential of Eq. (1) can besummed over all relevant radii and amplitudes. We can
written in terms of one free parameter. Thus, the thin-write, in general,

wall constraint can be used to express the corrected value © R 5

of this parameter in terms offi. in appropriate units. Foe zf ] " Fy MdR doa, 8)
The free energy of the critical bubble is then obtained ’ win J Ron OR 0y

by finding the bounce solution to the equation of motion
V2¢ — dVee(¢)/d¢ = 0 by the usual shooting method,
and substituting this solution into Eq. (6).

Therefore, in order to determin®&.,, we must first
calculate the free-energy densitf,. of the subcritical
bubbles. As a first step, we follow the work of Ref. [6] to
obtain the equilibrium number densiiy, of subcritical
bubbles. If we define the distribution functiofi =
0%ng,/OR 04, then f(R, dpa,t)dR dop, is the number
density of bubbles with a radius betweBnandR + dR
and an amplitude betweetiy and ¢4 + dd4 at timer.

It satisfies the Boltzmann equation

where ¢, defines the lowest amplitude within the
phase, typically (but not necessarily) taken to be the maxi-
mum of the double-well potential.R;, is the small-

est radius for the subcritical bubbles, compatible with the
coarse-graining scale. For example, it can be a lattice cut-
off in numerical simulations, or the mean-field correlation
length in continuum models. As fdt..x, it is natural to
choose it to be the critical bubble radius.

As an application of the above method, we will inves-
tigate nucleation rates in the context of a 2D model for
which accurate numerical results are available [10]. This
will allow us to compare the results obtained by incorpo-

R, dat) _ _ v af + (1 — 7)Goos rating subcritical bubbles into the calculation of the decay
ot IR barrier with the results from the numerical simulations.
— £V Giperm — ¥G1—p . (7) The 2D scalar potentidl (¢) is given in Eq. (1). Fol-

The first term on the right-hand side is the shrinking term{@Wing the rescaling of Ref. [10], the potential can bezwrit-
(note thatv = dR /9t is negative), the second term is (€N iN terms of one dimensionless paramater m*h/g”,

the nucleation term wher& is the nucleation distribu- V(p) = %¢2 - é¢3 + Ap*/24. (9)

tion function, which is defined by’ = [dR d¢ G, and _ o

o is the nucleation rate per unit volume of subcriti- This double-well potential is degenerate wher= 1/3.

cal bubbles from the “0” phase (the initial phase) to the AS argued before, we find the new coarse-grained poten-
“+” phase. The division of the system into two phasedial Ve, (or, equivalently.\.;) by constraining it to agree
depends on the particular application at hand, as will bavith the thin-wall limit. Simple algebra from Egs. (4) and
clear in the exe(lmpl)? below. By the Gibb's distribution, (9) Yields, to first order in the deviation from degeneracy,
Gyt = Ae RoRAI/T \whereA is a constant indepen- 7

dent of R and ¢. 3 Ag = A = Fe/54, (10)

The factory is defined as the fraction of volume in wheref,. = (g%/m®)Fi is the dimensionless free-energy
the + phase, and is obtained by summing over subcriticatlensity in subcritical bubbles. The new potentia, is
bubbles of all amplitudes within this phase. The thirdthen used to find the bounce solution and the free energy
term is a phenomenological thermal destruction term (seef the critical bubble.

Ref. [5]), where'V is the volume of a bubble of radiug, The calculation of Fi. in two dimensions is fairly
Gierm = aT/V, anda is a constant. The fourth term is straightforward. Close to the thin-wall limit (i.e.,
the inverse nucleation term. For more details about thig;,.. = G+_¢ = G), one can analytically solve the equi-
Boltzmann equation, see Ref. [6], which has improvedibrium Boltzmann equation for the density distribution
upon the work of Gelmini and Gleiser [5]. function, obtaining f(R, ¢4, T) = (1 — 2v)Wr(R, da),

The free energy of the subcritical bubbles is determineavhere(v = |v])

by modeling them as Gaussian fluctuations with ampli-

273
tude ¢4 and radiusk such thaip.(r) = pae /%, The  Wp(R, pa) = Alv exp[_g + RT(a/v) + M}
free energy of a given configuration can then be found 2 T 4B

by using the general formul&, = [d*r[3(Vey)? + y W_T{l _ f[ ﬁ(R N (a/v)Tzﬂ}
V(ps)]. Although this approach only includes one par- B er T 232 ’
ticular shape out of all possible field configurations, the (11)

agreement between theory and numerical experiments in- ] o )

dicates that the Gaussian profile is an adeqaasatzfor an_d we wrote the free energy of a given szubcrltlcal configu-

the dominant large-amplitude thermal fluctuations. ration asfy, = a BR?, with @ = 7$4/2, and B =
The equilibrium number density of subcritical bubblesa (3 — 54 + A¢i/48). Likewise,y = Ir/(1 + 2I7),

is found by solving Eq. (7) withof/dr = 0, imposing  where I = fj;m fﬁ:’;‘: mr’Wrdrd¢. The radial inte-

the physical boundary conditigf(r — «) = 0. Oncewe gration can be done analytically, although the result is

know the distribution function and free energy for a bubblenot particularly illuminating. The integral over amplitudes
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AL R NNy 2 ARy temperatures had to be used to attain nucleation, increas-

L —— Std. theory ing the error in the barrier measurements. However, we
5o o T=10.2=90 note that even with the large error bars the data are in-

- T=20,a=0.1 consistent with the theoretical predictions for the barriers,
while the corrected barrier values fall within the error bars
for a wide range of parameters. We note that data from
1D simulations also show the same behavior as the data in
Fig. 2 [10]. Simulations in 3D are in progress, and will
enable us to test this method in more detail.

Finally, we stress that the inclusion of nonperturbative
corrections through the definition of an effective, coarse-

L grained, coupling may have several consequences not only
0—%26 028 0.3 0.32 to the nucleation rate of first-order transitions, but also

A to their dynamics. Clearly, once we have a corrected

FIG. 1. Comparison of the decay barrier as a functiomof potential, quantities such as the critical temperature, the
with and without the inclusion of subcritical bubbles, at fixed gmount of supercooling, the bubble-wall velocities, and
temperatures. the completion time for the transition will change. This
opens up several possible applications of this method, from

must be done numerically. We then substittt&, ¢4, T) laboratory studies of nucleation to cosmological phase
: i N transitions.
andvy into Eq. (8) to finally findF,. (A, T, A/v, a/v). )

Figure 1 illustrates the effect of subcritical bubbles onb_We th%”ks-JDOV‘:/e'?'%”’ J. '?“emf.‘”’ E|:N ch)il'b’ A. Steb-
the nucleation barrier for constant values of the temper -'né an ) t.' " ein ergt odr bs '?;1“ al\lln% |s|cgs_3|ons.
ture. The temperatures are chosen to be within the ran@aun' d\;\{[?osn ?ﬁ:gﬁgﬁ zulfrl?e(;: d?an tia)I/ Faiult;?llz(t)-:‘rrlﬁws ‘2\3:;3
used in the 2D simulation. The constahtwas fixed at

(PHY-9453431), and by NASA (NAGW-4270). He

A = 0.1, consistent with the measurements of Ref. [10]. i . ;
Notice that the presence of subcritical bubbles greatly det_hanks the Nasdrermilab Astrophysics Center for their

creases the barrier as the potential approaches de en&IJOI hospitality during part of this work. A.F.H. was
acy (A — 1/3). However, fgr small tepmpperaturdS <g supported in part by the DOE and by NASA (NAGS-

10m*/g?, the correction becomes negligible. 2788) at Fermilab.
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