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Abstract—Through extensive testing and interviews of 
sophomore, junior, and senior engineering students in a 
Materials Science Engineering course at The Ohio State 
University, we found that these students struggle with many skills 
necessary for their coursework. Often these “essential skills” 
were prerequisite to the course and little to no instruction time 
was spent on them. Online training was developed to attempt to 
improve these skills. Students participated in the training several 
times over the term, with each assignment taking 10-20 minutes 
and consisting of 10 questions. Students were allowed unlimited 
attempts on each assignment and were required to achieve 
mastery (80% or better) for full credit. Training covered a wide 
range of topics: interpreting log plots and log scales, using metric 
prefixes for various conversions, estimating typical values of 
common material properties, employing dimensional analysis, 
and operating equations when given variables in mixed units. 
Unlike the success achieved by the log plots training, most of the 
topics saw little and insufficient improvement as a result of 
training, despite the basic nature of the skills. Future 
improvements to the training will focus on determining which 
factors will help to convince students of the importance of 
mastering these prerequisite skills. 

Keywords—engineering, computer training, online homework, 
mastery learning, student understanding, essential skills 

I. INTRODUCTION AND THEORETICAL BACKGROUND 
Many engineering students at The Ohio State University 

are required to take an introductory course in Materials Science 
Engineering. Students are expected to leave the course with 
mastery of certain categories of knowledge which are utilized 
frequently during coursework, some of which are considered 
prerequisite to the course. An example of this knowledge is the 
ability to read and interpret log plots, training on which has 
been successful across multiple terms [1]. Through interviews 
with instructors and exploratory pilot testing, we found that 
students have significant difficulties with a number of other 
basic skills essential to a functional understanding of materials 
science engineering and engineering in general. 

The “essential skills” studied here consist both of 
prerequisite skills to the course—e.g., metric prefixes and 
conversions, dimensional analysis, and operating equations 
when given variables with mixed units—as well as skills the 
instructor expects to impart to the students—e.g., order of 

magnitude estimates and patterns of common material 
properties. 

One critical aspect of the essential skills is that they are 
necessary for solving the types of problems posed in exams—
even the simpler ones. Therefore, it is expected that students 
are near 100% accuracy with these skills. Even if students are 
80% accurate with these essential skills, this lack of mastery is 
a critical bottleneck for successful performance. Here we 
demonstrate that a worrisome 20-50% of students performed 
poorly in many of these categories. Despite this, instructional 
time was typically not dedicated to the prerequisite skills. In 
this study, we developed a series of computer-based training 
tasks, assigned as homework, to attempt to address these 
issues. The training employs the method of mastery learning, in 
which time on task is allowed to vary to allow each student to 
obtain a required level of mastery. 

The two most influential versions of mastery learning are 
Bloom’s Learning For Mastery [2] and Keller’s Personalized 
System of Instruction [3]. Though these strategies vary in 
many ways, Block and Burns describe their similarities in [4]: 
(1) they prespecify a set of course objectives that students will 
be expected to master at some high level, (2) they break the 
course into a number of smaller learning units so as to teach 
only a few of the course’s objectives at one time, (3) they teach 
each unit for mastery--all students are first exposed to a unit’s 
material in a standard fashion; then they are tested for their 
mastery of the unit’s objectives, and those whose test 
performance is below mastery are provided with additional 
instruction, (4) they evaluate each student’s mastery over the 
course as a whole, on the basis of what the student has and has 
not achieved rather than on how well he has achieved relative 
to his classmates. 

In a meta-analysis of courses utilizing mastery criterion for 
learning, Kulik showed in [5] that mastery learning is effective 
in improving student performance on exams at all levels of 
learning. This improvement is greater for students with weaker 
content knowledge, making mastery learning a useful 
remediation tool. 

Another successful, and more recent, approach to learning 
is to use computer training as part of coursework. This has 
been successful in many forms: Multimedia learning modules 
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viewed before lecture improved performanc
and delayed post-tests when compared to re
and figures alone [6]; deficiencies in m
remediated by the adaptive ALEKS tutor p
integration of physics simulations, such as circ
lab have been successful in improving conte
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The prerequisite nature of many of the kno
observed in Materials Science Engineering s
that computer-based training graded for master
provide successful remediation of these difficu

This paper aims to investigate and d
difficulties with engineering essential skills. A
understanding of the knowledge state of the
population is invaluable to future steps in 
difficulties. Also presented are the results o
training, which can be used as a model or s
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II. METHODS 
Exploratory data taken during Autum

showed poor performance at the essential sk
this paper. During Autumn semester 2012, 
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Materials Science Engineering course at 
University. Most of the students in this clas
and junior engineering majors. For 6 weeks 
beginning in week 6, students completed the 
Quizzes”, each worth approximately the same 
as one homework assignment. There were 
remaining open to the students for one we
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mentioned above. Time spent on each week’s
to the mastery grading criterion, but aver
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essential skills quizzes and instruction, the 
randomly split into two conditions: 127 pre
Quiz (week 4) participants and 144 post-Esse
(week 13) participants. Twenty students per
selected for interview data; these students wer
while taking the essential skills assessment an
think out loud and respond to prompts from
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Fig. 1. Experimental conditions used in 
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completed the Essential Skills Quizzes concu

Training with the Essentia
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so that the content each student se
quiz, but the specific questions ma
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III. RESU
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Fig. 2. Metric conversion training questions came in th
notation questions (top); decimal form questions (middle
questions (bottom), which were given with multiple choice

courses the student had already taken. Tra
conversions comprised 6 of the 10 questions in
Quiz #2 plus 2 of the 10 questions in Essentia
and involved three problem types (Fig. 2). 

Despite the fact that students had to 
during the Essential Skills Quizzes, we found
metric conversions resulted in no significant c
performance. One of the three metric convers
the essential skills assessment asked stude
volumetric conversion from cubic centimeters
There was no significant difference in sco
(73%) to posttest (71%). The most common e
the problem as a length conversion (centim
ignoring the volumetric nature of the prob
should be noted, however, that volumetric pr
included in the training, thus students faile
skills they may have acquired from this quiz. 

The remaining two metric conversion qu
only linear conversions and gave conflicti
question asked students to convert from 
megagrams, working in scientific notation
significantly improved from 62% to 74% (χ2

= 0.044, d = 0.25). The other question as
convert from kilometers to centimeters in de
question showed a marginal decrease from
(χ2(1)^2 = 2.652, p = 0.103, d = -0.20). 

Overall, student performance  on me
yielded rather limited and inconsistent res
importance and relative simplicity of th
performance is unacceptable low. On average
just 74.8% correct on the three metric conv
before training and 75.5% after (t = 0.193, p = 

B. Dimensional Analysis 
Students in engineering are expected to u

meaning they need to be able to analyze 
relationships between variables in an equatio
 

Fig 3. Common answer patterns on an example metric 
Students were asked to convert from cubic meters to cu
most common error was to treat the problem as a length c
converting from meters to centimeters. Neither of 
statistically significant. 
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hown in Fig. 5. This updated 
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Fig. 5. An example dimensional analysis question from
assessment and patterns of right and wrong answers
statistical significance at the p < 0.05 level. Student co
error submitted an answer that was the reciprocal of the co

 Interestingly, students who believed that th
be solved with the given information showed 
in correctness from 56% to 72%, though thi
outside the range of significance (χ2(1)^2 = 3.
= 0.43). The lack of statistical signific
respectable effect size--is likely due to smal
sizes, a deficiency owed to the change in prete
problem and the larger proportion of student
information was needed in the pretest condition

C. Mixed Unit Equations 
Engineers in the field use equations to 

from measurements, and the instruments 
measurements don’t always do so in consisten
it is essential that engineering students be 
equations--to find the value of the dependen
presented with independent variables in mixed

Fig 6. An example of a mixed unit equation train qu
questions in this category had the same form, but many
equations. 
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Fig. 7. An example mixed unit equations q
patters of right and wrong answers. Asterisks
p< 0.05 level.  

 As a part of training, student
equation as well as values for 
involved, which were purposefully 
6). Students were then asked to
variable in specified “target units.
equation consisted of 3 of 10 questi
4. Training was somewhat succes
assessment scores on mixed unit eq
to 48% (t = 2.765, p= 0.006, d=0.3
still below 50%. 

 While overall scores in the mix
showed significant improvement in
of the three individual question
assessment failed to do so. Scor
question, increased from 40% to 4
was not statistically significant (χ2(1
0.13). The question statement and 
converting to incorrect target unit
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shown in Fig. 7.  For this item, t
affected by training was students gi
target units than specified in the prob

A similar question involving 
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Fig 8. Typical values training questions had two catego
(top); and ranking questions (bottom), which contained
appropriately ranked by some material property.  

Training on estimates of typical valu
properties produced a range of results from sig
marginal losses. Cumulative student performa
in this category showed a nonsignificant chang
0.145, d = 0.18) from pre (35%) to post (40%)

A series of three questions asked student
Young’s modulus of three materials: copper
high-density polyethylene (HDPE). Since stud
these questions spanned such a broad range,
results a number of ways. One metric 
“acceptable range” for the numerical answer
by a course instructor (see Fig. 9). By this
responses to the question on copper sho
improvement (χ2(1)^2 = 5.377, p = 0.020, d 
percentage of students in the acceptable range
34% to 49%. Student estimates of the Youn
aluminum showed no significant improvem
0.805, p = 0.370, d = 0.11) from pre (40%
HDPE started and remained at 25% within
range, showing no change at all. Note that non
values are higher than 50%, despite the f
contained problems dealing with Young’s mod

A second metric was to determine 
responses were in any of four increasingly l
within 20% of the correct answer, within 2x th
within 5x the correct answer, and within 
answer. This metric revealed a slightly more
which can be seen Fig. 10. While student per
copper question showed some improvement a
 

Fig 9. “Acceptable ranges” for the Young’s modulus of m
essential skills assessment, specified by the instructor. 
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from 21% to 10%. In essence, stu
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approach yielded no significant chan
the question about HDPE for all ran

 The final metric attempts to f
values of student responses, rather 
value itself. Through discussions w
was expected of the students that
Young’s modulus values for the m
Students giving a higher value for 
decreased significantly (χ2(1)^2 = 9
from 55% to 36%; students giving
than for copper decreased significa
0.012, d = 0.32) from 59% to 43%. 
incorrectly giving a higher Young’
for both aluminum and copper 
=4.314, p = 0.038, d = 0.27) as wel
values can be seen in Fig. 11. Despi
is again worth noting that posttest 
one of these errors about 40% of the

Students were also asked to rat
answers. Student confidence increas
(t = 2.477, p = 0.014, d = 0.43) a
0.017, d = 0.43), but decreased non-
(t = -1.159, p = 0.248, d = -0.20). N
confidence rankings exceeded 2.
  

Fig 10. Classification of student estimates o
aluminum, and high-density polyethylene (
value. Asterisks indicate significant change 
all of these changes were improvements. 
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d the correct answer. This 
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ges. 

focus more on the relative 
than the magnitude of the 

with the course instructor, it 
t they at least give higher 
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9.280, p = 0.002, d = 0.40) 
g a higher value for HDPE 
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The percentage of students 
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ite statistical significance, it 
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e time.  
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.2 out of 5 for any of  

f the Young’s modulus of copper, 
(HDPE) in relation to the actual 
at the p < 0.05 level, though not 
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Fig 11. Relative value error frequencies for typical va
student to estimate Young’s modulus of aluminum, co
these are errors, a decrease in percentage corresp
correctness. 

the three materials involved, and changes in st
did not match student improvement in terms of

Finally, posttest students were asked to g
melting points for metals, polymers, and
question was not included in the pretest. S
were judged based on the correct relative o
points; 71% of students ordered the melting 
This leaves almost 30% of posttest students un
rank typical melting points of three distinct ma

E. Interview Data 
Twenty students each from pretest posttest

subjected to “think-aloud” interviews as the
FLEX assessment. The most striking fe
interviews was that many students not only a
lacked certain knowledge and skills, but seem
that fact. Some excerpts from interviews are sh

• “Usually I look [the metric prefixes/con

• “[Metric prefixes are] readily availabl
and textbook.” 

• When asked if they felt it was importa
“I feel like there’s always a table for it.

• Some students described their lack of 
these topics as a conscious choice: “I
able to look them up. So, as of now, I
to memorize them.” (Emphasis is autho

The prevailing view for certain knowle
seems to be something along the lines of “W
when I can always look it up?” Perhaps the wh
best described by one student in particular. W
struggled on metric conversions, the procto
answer any questions you have [about met
conversions] once you’re done.” to which th
“Or I can just go on Wikipedia.” 

IV. DISCUSSION 
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30% of posttest students were unable to co
typical melting points of polymers, metals, and
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interviews that the last bullet is important for at least some of 
the topics. The interview data hint at an explanation for this 
lack of consistent success. “Or I can just go on Wikipedia.” 
Unlike training on log plots, the answers to which questions 
cannot be easily “googled,” many of the essential skills can be 
performed with the aide of computer tools and text 
references—unit conversions can be typed into the Google 
search bar, the metric prefixes are inside the front cover of the 
text, Wolfram Alpha will operate equations and perform 
conversions for you. Because these references are so readily 
available, many students do not see committing these essential 
skills to memory as a task worthy of their time. In the process 
of maximizing points earned per time spent, these tasks simply 
fall by the wayside. The relative success of dimensional 
analysis training is in line with this explanation; you can’t 
“google” dimensional analysis very easily, so knowledge in 
this category was better retained in training. 

As far as students not exerting a full effort in the posttest, 
this is likely to play a factor, but from a number of years of 
experience with tests in this context, we have found that 
students do answer these questions with a reasonable amount 
of effort.  

Note that one threat to the external validity of this study is 
that pre to post training gains on the test were in fact not due to 
the training but rather from the instruction in the course. That 
is, all effects reported here may be the result of a combination 
of training and course instruction, and it is not clear which (if 
not both) caused the gains. Therefore further research in this 
area would benefit from a more controlled design in order to 
isolate the effects of training and instruction. In any case, it is 
clear that, from an instructional point of view, significantly 
higher gains are desired. 

V. INSTRUCTIONAL IMPLICATIONS AND NEXT STEPS 
The results of this study offer invaluable insights into the 

knowledge state of undergraduate engineering students. 
Instructors should be aware of these fundamental deficiencies 
in their classrooms and should take measures to ensure students 
are made aware of their shortcomings as well. Simple mastery-
based training has been shown to be effective with some skills; 
future training can use this study as a starting point or a model 
upon which to build. At the very least, some form of 
intervention—instructional or otherwise—seems necessary to 
prevent allowing students with such critical deficiencies to slip 
through the academic cracks. 

The continued poor performance of students suggests that it 
may be useful to focus on determining with factors might help 
convince them of the importance of mastering these essential 
skills, thus motivating the students to achieve mastery. In this 
study, the essential skills were somewhat separate from the 
activities of the lecture and recitations. One way to mitigate 
this effect is to increase the direct involvement of the 

instructors, helping to create a dialogue with students as to why 
mastery of these skills is important. 

Another possible approach to further improving mastery 
and fluency is to progressively limit the time allowed for the 
Essential Skills Quizzes, particularly those containing 
knowledge that can easily be looked up online. This will help 
compel students to internalize and automate the essential skills 
and related knowledge. 

Finally, this study suggests that instructors should consider 
two practical categories of essential skills and knowledge. The 
first is the category of skills and knowledge that lend 
themselves well to short, spaced training. The second category 
is comprised of simple knowledge or skills that one can 
quickly access via other resources such as the internet. This 
study suggests that the latter category seems to be resistant to 
brief training, as students often recognize easier methods for 
success in place of committing the skills to memory. In this 
second case, the relevant instructional goal would be to 
improve students’ mastery in efficiently accessing this 
information. 

ACKNOWLEDGMENTS 
This work has been supported in part by the Center for 

Emergent Materials at The Ohio State University, an NSF 
MRSEC (Award Number DMR – 0820414). 

The authors would also like to thank Katharine Flores and 
Alison Polasik for their comments and generous cooperation 
with us in implementing the assignments in their courses. 

REFERENCES 
[1] Heckler, A. F., Mikula, B. D., & Rosenblatt, R. (submitted for 

publication)  Student accuracy in reading logarithmic plots: the problem 
and how to fix it. FIE 2013 Conference Proceedings. 

[2] Bloom, B. S. (1968). Mastery Learning. Evaluation comment, 1(2). Los 
Angeles: University of California at Los Angeles, Center for the Study 
and Evaluation of Instructional Programs. 

[3] Keller, F. S. (1968). “Good-bye, teacher…” Journal of Applied 
Behavioral Analysis, 1, 79-89. 

[4] Block, J. H., & Burns, R. B. (1976). Mastery Learning. Review of 
Research in Education, 4, 3-49. http://www.jstor.org/stable/1167112. 
Accessed: 27 March 2013. 

[5] Kulik, C. C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). 
Effectiveness of Mastery Learning Programs: A Meta-Analysis. Review 
of Educational Research, 60(2), 265-299.  

[6] Stelzer, T., Gladding, G., Mestre, J. P., & Brookes, D. T. (2009). 
Comparing the efficacy of multimedia modules with traditional 
textbooks for learning introductory physics content. American Journal 
of Physics, 77(2), 184-190. 

[7] Hu, X., Luellen, J. K., Okwumabua, T. M., Xu, Y., & Mo, L. (n. d.). 
Intelligent tutoring systems help eliminate racial disparities. 
http://www.aleks.com/highered/behavior/AERA_Paper.pdf. Accessed: 
28 July 2012. 

[8] Podolefsky, N., Reid, S., & LeMaster, R. (2005). When learning about 
the real world is done better virtually: a study of substituting computer 
simulations for laboratory equipment. Physical Review Special Topics - 
Physics Education Research, 1(1), 010103. 

 

1065
2013 IEEE Frontiers in Education Conference


	FIE2013_Proceedings 1181
	FIE2013_Proceedings 1182
	FIE2013_Proceedings 1183
	FIE2013_Proceedings 1184
	FIE2013_Proceedings 1185
	FIE2013_Proceedings 1186
	FIE2013_Proceedings 1187



