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We report a study on students’ approaches to quantitative synthesis problems with varying mathematical complexities. 
Synthesis problems involve multiple concepts typically taught in different chapters. In this study, mathematical 
complexity is determined by the number and the type of equations that must be simultaneously solved. Students from a 
second year calculus-based physics course were randomly assigned to solve one of three synthesis problems varying in 
mathematical complexity: simple, medium, or complex. Results from extended written and interview responses revealed 
four major problem-solving approaches used by the students: trial-and-error, flawed reasoning, knowledgeable, and 
expert-like approach. Students solving the simple problem used all the four approaches, whereas those solving the other 
two mainly used the “trial-and-error” or “flawed reasoning” approaches. A common phenomenon is that many students 
could identify the appropriate concepts but failed to correctly apply them. Additionally, the students made similar 
mistakes on all the three problems. 

I. INTRODUCTION

Most of the previous work on physics problem solving 
has utilized single-concept problems. There is a dearth of 
studies on problems comprising multiple concepts which 
explicitly addressed this research area [1-3]. Our study is 
based on synthesis problems which are tasks consisting of 
at least two distinct concepts, typically from different 
chapters and separated in the teaching timeline [1]. The 
core of synthesis problems is the merging of multiple 
concepts as well as equations (emerging on concepts 
application) in order to build a solution. Initial studies on 
synthesis problem solving [1,2] have highlighted the key 
role of guided conceptual scaffolding to support students’ 
recognition and application of relevant concepts. Another 
study identified concept recognition and application as the 
main bottlenecks in solving synthesis problems [3].  

This paper reports on students’ problem solving 
strategies when handling quantitative synthesis problems 
with varying mathematical complexity. In this study we 
will operationally define mathematical complexity as the 
number and type of equations required to be simultaneously 
solved. For example, consider a problem involving two 
equations and two unknowns. We propose that a problem in 
which both unknowns are in both equations is more 
mathematically complex than a problem in which only one 
unknown is in each equation. Further, we propose that a 
problem involving unknowns in non-linear relationships 
(such as a quadratic or trigonometric) is more 
mathematically complex than a problem involving 
unknowns in linear equations. Note that in this study, the 

physics problems themselves do not change per se, rather 
the variables which are known and unknown are 
manipulated, thus varying the mathematical complexity.   

We posit that in solving quantitative synthesis problems, 
mathematical complexity is an additional potential 
bottleneck that may interfere with the students’ 
identification and application of relevant concepts and 
hence their problem solving strategies. Here, problem 
solving strategy refers to a sequence of steps to be 
implemented in an attempt to solve problems [4], which 
aligns with our goal of providing insights into the students’ 
abilities to identify and apply relevant concepts in tackling 
synthesis problems. 

The following research question is addressed: What are 
the approaches that students use for solving quantitative 
synthesis physics problems with varying mathematical 
complexity? 

II. METHODOLOGY

By varying which variables are known and unknown, 
thus varying the mathematical complexity, we designed 
three versions of the same problem, simple, medium and 
complex (see Figure 1). Each task involves a block on an 
inclined ramp, being propelled from a spring. The block 
undergoes a trajectory and lands on another inclined 
surface. Conservation of energy and projectile motion are 
the two pertinent concepts to solve the three tasks. 

We acknowledge that students may employ a variety of 
concepts and/or equations. However, four fundamental 
equations (shown in Figure 2) are required to solve all three 
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problems. One equation is needed for energy conservation 
relating the different energy sources present in the system 
(equation (1) in Fig. 2). Three equations are required for 
projectile motion. These equations correspond to horizontal 
(equation (2) in Fig. 2) and vertical (equation (3) in Fig. 2) 
motion, and the trigonometry relating the angle ϕ, the 
magnitude and direction of the horizontal and vertical 
components of motion (equation (4) in Fig. 2).  

The mass of the block (m), spring constant (k), 
equilibrium position (L) and angle ϕ are the common 
information provided in all the three tasks. The simple task 
also provides information about the initial compression of 
the spring (x) and the angle of initial slope (Ө). It asks for 
the horizontal distance (R). Thus, equation (1) is readily 
solved for v since it has only one unknown. This leaves 
three equations, (2)-(4) in Fig. 2, with 2 unknowns, which 
with some relatively simple manipulation results in a linear 
and simple equation for R. The medium problem provides 
information about Ө and R. It asks for x. The complex 
problem provides information about x and R, and asks for 
Ө. Both of these problems require solving 4 equations with 
multiple unknowns. The complex problem is rated as more 
complex since it involves using the quadratic equation and 
trigonometric functions.  

FIG. 1. The three versions of the synthesis problems. 

FIG. 2. The four fundamental equations. 

Our sample consists of 13 students, enrolled in a second 
year mechanics course for physics majors. These students 
were often exposed to synthesis problems in their 

mechanics course. Each student participated in a 50-minute 
individual interview session and was randomly assigned to 
either the simple (n = 4), medium (n = 5), or complex (n = 
4) problem. In each session, the student was initially
allocated 20-25 minutes to solve the problem. The
interview immediately followed, lasting a maximum of 25
minutes.

From the written responses, we coded the concepts that 
the students identified, and how (correctly or incorrectly) 
they applied the two pertinent concepts. We captured the 
conceptual errors made when the pertinent concepts were 
incorrectly applied. We also considered whether the 
students combined the energy conservation and projectile 
motion equations to find a value or an expression for the 
unknown. Finally, we coded the potential cause 
(mathematical or conceptual errors or a combination) for an 
incorrect solution. The interview responses were analyzed 
thematically for the following: (i) factors cueing the 
identification of particular concepts, and (ii) reasons for 
incorrect application of pertinent concepts.  

 We constructed “profiles” based on the students’ 
written and interview responses. The profiles provide a 
holistic description of the problem solving approaches by 
considering the following three themes: (i) concept 
identification, (ii) concept application and, (iii) synthesis of 
energy conservation and projectile motion equations. For 
each student, the written solution and interview responses 
were considered together, summarized and described thus 
leading to a profile. The holistic descriptions (i.e profiles) 
are structured such that they capture the main variations in 
the actions and reasoning of individual students within the 
whole sample. This process was repeated for all the 13 
students whereby the descriptors were refined. Four main 
profiles emerged from the data. They describe four different 
strategies with increasing level of sophistication for 
handling the synthesis problems. These are “Trial and 
Error”, “Flawed Reasoning”, “Knowledgeable” and 
“Expert-like” approach. The process of profile allocation 
was repeated independently by two researchers and an 
inter-reliability rate of 86% was obtained.  

III. RESULTS

Table 1 presents the profiles for the problem solving 
strategies with increasing level of sophistication. Most 
students (61%) used the “Flawed Reasoning” approach. 
Around 23% of the students employed the “Trial and Error” 
strategy. An equal percentage (8%) of students had a 
“Knowledgeable” and an “Expert-like” approach 
respectively. Table 2 gives the distribution of students, 
across the four profiles for problem solving strategies, with 
respect to the task’s mathematical complexity.  Students 
tackling the simple task used all four approaches. Those 
who solved the medium and complex task only employed 
the “Trial and Error” or “Flawed Reasoning” strategy.
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TABLE 1. Profiles for strategies used to handle the synthesis problems (n = 13).

TABLE 2. Percentage of students with respect to task’s mathematical complexity and problem solving approaches (n=13). 
Types of Problem Solving Approach 

Task complexity Trial and Error Flawed Reasoning Knowledgeable Expert-like 
Simple 8% 8% 8% 8% 

Medium 8% 30% 0% 0% 
Complex 8% 22% 0% 0% 

For concept identification, students from the “Trial and 
Error” approach initially considered Newton’s Second Law 
cued by the use of constant acceleration equations for the 
2D motion aspect of the problem. Hence acceleration is 
obtained from Newton’s Second Law allowing velocity to 
be found. However, the students shifted to energy 
conservation when they failed to find a value/expression for 
velocity from acceleration. The following quote typifies this 
description: “I knew at this point [showing the 2D motion 
aspect] I’ll be using constant acceleration equations. When 
I saw that we needed acceleration, I guess you can solve for 
acceleration using force. If I solve for acceleration [...] I 
really don’t know how to convert it into velocity.” In 
contrast, students from the “Flawed Reasoning”, 
“Knowledgeable” and “Expert-like” approach identified 
energy conservation and projectile motion at the onset. 
Individual interviews revealed that the factors cueing the 
pertinent concepts are familiarity with similar single-
concept problems and surface features of the task.  

For concept application, students from the “Trial and 
Error” and “Flawed Reasoning” approach incorrectly 

applied energy conservation and projectile motion. For the 
“Knowledgeable” approach, only projectile motion was 
correctly applied. For the “Expert-like” approach both 
pertinent concepts were correctly applied. The following 
are some typical errors for energy conservation and 
projectile motion respectively.  

FIG.  3. Conceptual errors for energy conservation. 

In Figure 3(a) the student omitted the block’s 
gravitational potential energy and used an incorrect 
expression for the spring potential energy. The main reason 
for ignoring gravitational potential energy is that there is a 
negligible change in height along the ramp, as shown by the 
quote: “I didn’t even think that there would be a change in 
gravitational potential energy since we are travelling very 
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short distances which are negligible.” In Figure 3(b), the 
energy conservation equation has an incorrect height 
expression for the block’s gravitational potential energy. 
The spring compression x was ignored when the block 
reaches the crest of the ramp. For projectile motion, Figure 
4(a) indicates inconsistencies in the direction of motion in 
the equation for vertical motion. Figure 4(b) depicts 
incorrect initial position in the equations for horizontal and 
vertical motion. It also highlights that the student 
incorrectly relates the angle ϕ to the horizontal and vertical 
motion. 

FIG.  4. Conceptual errors for projectile motion. 

For synthesis of equations, students from the “Trial and 
Error” approach did not combine the energy conservation 
and projectile motion equations. Those from the “Flawed 
Reasoning” approach might combine the equations but they 
either got an incorrect value or an incorrect expression. An 
incorrect value was found due to either conceptual errors 
only or a combination of mathematical and conceptual 
errors. An incorrect expression was formulated due to 
conceptual errors only. Also, the variable to be found was 
often not isolated. Overall, the conceptual errors were found 
to be associated with both pertinent concepts. As for those 
in the “Knowledgeable” approach and “Expert-like” 
approach categories, students typically combined the 
equations. However, in the former case, an incorrect value 
was often obtained due to conceptual and mathematical 
errors associated with formulating and manipulating the 
energy conservation equation. In the latter case, even if a 
value was not evaluated, a final correct expression was 
formulated isolating the unknown to be determined. 

IV. CONCLUSIONS

Four main approaches were used when solving 
quantitative synthesis problems with varying mathematical 
complexity. Students who completed the simple task used 
all four strategies. Those who handled the medium and 
complex task mainly used the less sophisticated “Trial and 
Error” and “Flawed Reasoning” approach. In addition to 
processing the two pertinent concepts (i.e identifying, and 
reflecting on their applications and connections), the 
students have to manipulate various mathematical 
formalisms which became more difficult and intricate as 
mathematical complexity increased. Likely, the 
predominant use of the less sophisticated problem solving 
approaches to the medium and complex tasks could be due 
to cognitive load.  

A previous study [3] identified concept recognition and 
application as bottlenecks for synthesis problem solving. In 

our case, across the three tasks, the students were able to 
recognize the pertinent concepts but they mostly failed to 
apply them appropriately. They also made similar 
conceptual mistakes. Thus, mathematical complexity does 
not seem to interact with the students’ concept 
identification and application.  

An implication of this study is that synthesis problems 
may promote physics problem solving as a learning tool as 
well as an assessment tool. In the physics context, most of 
the tasks are structured to use single concepts whereby 
students are not given the opportunity to engage deeply in 
identifying the most appropriate concepts, and reflecting on 
proper approaches to handle the problem. Single-concept 
problems may encourage the mechanistic identification of 
concepts, and the plug-and-chug approach to problem 
solving. In contrast, synthesis problems provide a more 
authentic situation to prompt qualitative task analysis. 
Students need to dissect the task to the core fundamentals 
and make decisions about the most appropriate concepts to 
be used such as how and why to use them. They also need 
to reflect on how the multiple events and concepts are 
connected before designing the most suitable problem 
solving approach. For example, in our study, we noted that 
students from the “Trial-and-Error” approach initially relied 
on Newton’s Second Law to tackle the spring aspect of the 
problem but later shifted to energy conservation when they 
reached a dead-end. Further, synthesis problems cannot be 
solved by simple plug-and-chug. They require the blending 
of equations generated from applying the multiple concepts. 
Besides understanding the concepts underlying the 
equations, students need to comprehend how the different 
mathematical expressions are connected. 

Subsequently, it is worth exploring how students tackle 
the mathematics of synthesis problems and the associated 
difficulties. In their study on conceptual scaffolding in 
synthesis problems, Ding et al. [1] reported that one of the 
reasons for the students’ failure to determine the correct 
final value is their inability to merge multiple equations. 
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