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ABSTRACT—Mathematical concepts are often difficult to

acquire. This difficulty is evidenced by failure of knowl-

edge to transfer to novel analogous situations. One

approach to this challenge is to present the learner with a

concrete instantiation of the to-be-learned concept. Con-

crete instantiations communicate more information than

their abstract, generic counterparts and, in doing so, they

may facilitate initial learning. However, this article argues

that extraneous information in concrete instantiations

may distract the learner from the relevant mathematical

structure and, as a result, hinder transfer. At the same

time, generic instantiations, such as traditional mathemat-

ical notation, can be learned by both children and adults

and can, in turn, allow for transfer, suggesting that gen-

eric instantiations result in a portable knowledge represen-

tation.
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Mathematical concepts are often difficult to acquire. One

approach to this challenge is to present such concepts to the

learner via concrete instantiations such as physical manipula-

tives or contextualized examples. As noted by other authors in

this issue (e.g., Martin, 2009; Uttal & McNeil, 2009), there is

a widespread belief in the education community that concrete

instantiations benefit the learning of abstract concepts. Some

researchers (e.g., Martin, 2009; Sarama & Clements, 2009;

Wearne & Hiebert, 1988) have demonstrated successful use of

concrete instantiations for children’s acquisition of some mathe-
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matical concepts. At the same time, the evidence of the effec-

tiveness of concrete instantiations is not unequivocal (see

Sarama & Clements, 2004; Sowell, 1989; Uttal, O’Doherty, New-

land, Hand, & DeLoache, 2009). Concrete instantiations commu-

nicate more extraneous information than do their abstract

counterparts, and as a result, they may interfere with learning

and ⁄or transfer. In what follows, we present this argument in

greater detail.

Acquiring mathematical concepts is different from acquiring

everyday concepts. Everyday concepts, such as ‘‘chair’’ or ‘‘cat,’’

are grounded in perceptual similarity and are acquired with little

effort through encounters with instances of a concept (Kloos &

Sloutsky, 2008). Mathematical concepts, however, have precise

definitions based on their relational structure, and superficial

similarity of instances is irrelevant. Therefore, instances of the

same concept can be vastly dissimilar, sharing little or no obser-

vable similarities. For example, the same mathematical function

can describe the metabolism of medication in the body or the

temperature of a cooling cup of coffee. Because superficial fea-

tures can vary widely, it is often difficult to spontaneously recog-

nize instances of the same concept. As a result, the acquisition

of such concepts is often difficult for both children and adults

and typically requires some supervision (e.g., Kloos & Sloutsky,

2008), which may take a form of explicit instruction that begins

with an initial instantiation.

What is the best way to instantiate a concept to promote recog-

nition of novel isomorphs and successful transfer? One view is

that concrete instantiations may have an advantage over abstract

instantiations. An instantiation is concrete to the extent that it

communicates more extraneous, concept-irrelevant information

than an abstract, generic counterpart. For example, consider the

increase in information in the following possible symbols for the

concept ‘‘person’’: a black dot, a stick figure, a detailed drawing,

a real person. Added information can be perceptual—what we

can actually sense—or conceptual—what other information we

may know about the representation. By this interpretation, con-

crete instantiations include contextualized examples as well as
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physical objects. It is possible that some concrete instantiations

may facilitate initial learning by tapping prior knowledge that

communicates relevant structural aspects of the to-be-learned

concept. For example, children are familiar with equal sharing of

items prior to formally knowing the operation of division. In

addition, concrete instantiations may better facilitate learning by

being more engaging than abstract instantiations.

While some concrete instantiations may assist initial learn-

ing, successful learning does not necessarily result in suc-

cessful transfer (Gick & Holyoak, 1980, 1983; Goswami,

1991; Novick, 1988; Reed, Dempster, & Ettinger, 1985;

Reed, Ernst, & Banerji, 1974; Simon & Reed, 1976). There

are a number of reasons to be skeptical of the effectiveness

of concrete instantiations for transfer that stem from the

notion that concrete instantiations convey extraneous informa-

tion. First, transfer is influenced by superficial similarities

across domains, with transfer to similar instances being more

likely than transfer to dissimilar instances (Holyoak & Koh,

1987; Holyoak & Thagard, 1997; Ross, 1987, 1989). Extrane-

ous information of the learning domain may limit transfer

only to isomorphs with common superficial features. In addi-

tion, transfer may require alignment of the common structure

between the learned and novel domains (Gentner, 1983,

1989; Holyoak & Thagard, 1989, 1997), and there is evi-

dence suggesting that extraneous information may hinder

structural recognition and alignment. Superficial features of

an instantiation may also compete with relational structure for

attention (Goldstone & Sakamoto, 2003), possibly making the

detection of relations more difficult than it would be in an

abstract, generic format. Another potential difficulty for trans-

fer is that irrelevant information may be misinterpreted as

part of the relevant structure (Bassok & Olseth, 1995; Bas-

sok, Wu, & Olseth, 1995). Also, even for simple relations

such as the relation of monotonic increase, relational structure

common to two situations is less likely to be noticed when

the situations are represented in a concrete, perceptually rich

manner than when represented in a more generic form (Gent-

ner & Medina, 1998; Markman & Gentner, 1993). Finally,

concrete objects make poor symbols: Both children and adults

tend to reason about them as objects themselves, not as signs

denoting other entities (DeLoache, 2000; Schwartz, 1995;

Uttal, Liu, & DeLoache, 1999; Uttal, Scudder, & DeLoache,

1997). If concreteness hinders transfer of simple relations

involved in symbol use, it is likely to create an obstacle to
Table 1

Principles of a Commutative Mathematical Group

A commutative group of order 3 is a closed set of three elements and a bina

Associative
Commutative
Identity
Inverses
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transfer of more complex relations such as mathematical

concepts.

In a series of experiments, we investigated the effect of con-

creteness on initial learning and analogical transfer of a simple

mathematical concept of a commutative mathematical group of

order 3. This concept is a set of three elements, or equivalence

classes, and an associated operation that has the properties of

associativity and commutativity. In addition, the group has an

identity element and inverses for each element (see Table 1 for

properties). We instantiated this structure with different degrees

of concreteness, where levels of concreteness were varied across

participants. Training was presented via computer and consisted

of explicit presentation of the group rules using the elements of

the given instantiation, questions with feedback, and examples.

After training, participants received a multiple-choice test of

novel questions.

In our first experiment, undergraduate students were trained

and tested with either an abstract, generic instantiation or a per-

ceptually rich, concrete instantiation (Sloutsky, Kaminski, &

Heckler, 2005). The generic instantiation was described as a

written language involving three symbols in which combinations

of two or more symbols yield a predictable resulting symbol.

Statements were expressed as symbol 1, symbol 2 fi resulting

symbol. The concrete condition presented an artificial phenome-

non involving images of three colorful, three-dimensional shapes.

Participants in this condition watched movies of two or more

shapes coming into contact, then disappearing, and a resulting

shape appearing. In both conditions, the resulting symbol or

shape was specified by the mathematical structure. After training

and testing of one instantiation, participants were trained and

tested with the other instantiation. We found that participants

successfully learned both instantiations, with no difference in

average test score on the generic instantiation no matter which

instantiation they learned first. However, there was a marked

difference in average test score on the concrete instantiation,

with participants who were initially trained with the generic

instantiation scoring higher on the concrete test than participants

who were initially trained with the concrete instantiation. In

other words, learning the concrete instantiation resulted in no

improved learning of the generic instantiation. On the other

hand, learning the generic instantiation resulted in better perfor-

mance on the concrete instantiation, suggesting that participants

were able to transfer their knowledge from the generic to the

concrete instantiation. In a second experiment, we considered
ry operation (denoted +) with the following properties:

For any elements x, y, z: ((x + y) + z) = (x + (y + z))
For any elements x, y: x + y = y + x
There is an element, I, such that for any element, x: x + I = x
For any element, x, there exists another element, y, such that x + y = I
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Table 2

Concrete and Generic Instantiations of Commutative Group

Concrete Generic

Elements

Specific Rules:

is the identity is the identity

Operands Result

(Remainder)

Operands Result
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the effects of perceptual richness on initial learning. Participants

learned an instantiation of a group that had different levels of

concreteness: (a) generic black symbols; (b) colorful, patterned

symbols; (c) classes of colorful, patterned symbols; or (d) classes

of real objects. While all participants learned the rules, those

who learned with the generic symbols scored significantly higher

than did the other participants, with no differences across these

three conditions. Therefore, the mere addition of color lowered

learning.
Table 3

Stimuli for Transfer Domain

Elements:

Operands Result
(winning object)
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The results of these experiments demonstrated that percep-

tual richness that is irrelevant to the to-be-learned concept

hindered both learning and transfer. However, not all concrete-

ness is irrelevant perceptual richness. As noted above, some

concreteness may help to communicate relevant structure by

tapping prior knowledge or by presenting perceptual informa-

tion that is correlated with structure. This ‘‘relevant concrete-

ness’’ would most likely facilitate learning and possibly, in

turn, facilitate transfer. To investigate the effects of such rele-

vant concreteness, we instantiated the concept of a mathemati-

cal group in a context involving familiar objects that might

facilitate learning of the group rules (Kaminski, Sloutsky, &

Heckler, 2005). In this case, the elements of the group were

three measuring cups (see Table 2). Instead of learning arbi-

trary rules of symbol combinations, participants were told that

they needed to determine a leftover amount of liquid when dif-

ferent measuring cups were combined (see Table 2). For exam-

ple, combining and resulted in leftover.

We compared learning this instantiation with learning a gen-

eric instantiation and found that with minimal training (i.e.,

explicit statement of the rules and one example), both instanti-

ations were successfully learned, but the relevantly concrete

instantiation did have an advantage over the generic (81% vs.

63% correct, chance = 38%).

To test whether this advantage would exist for transfer, we

gave participants slightly more detailed training (questions with

feedback and examples) and then presented them with a novel

instantiation of an isomorphic group. This novel domain was

intentionally concrete and contextually rich, as are many real-

world instantiations of mathematics. Participants were asked to

figure out the rules of a children’s game. In the game, children

point to a series of objects, then the child who is ‘‘it’’ points to a

final object. This child wins if he or she points to the correct

object according to the rules (see Table 3). Participants were told

that the rules of the game were like the rules of the system they

had just learned (i.e., either the concrete or the generic instantia-

tion). Then participants were shown a series of examples from

which the rules could be deduced. The results revealed that with

the slightly protracted training, there was no difference in learn-

ing scores across the two conditions (78% vs. 75%). However,

there was a striking difference in transfer: Participants in the

concrete condition had an average test score of approximately

54% correct, while the average score in the generic condition

was approximately 79% (chance was 38%). We replicated these

results in another experiment and further found that when asked

to match analogous elements across learning and transfer

domains, 100% of participants in the generic condition were

able to do so, while only 25% of participants in the concrete con-

dition made the correct match, a rate no better than that of

chance guessing.

These reported results involved undergraduate college stu-

dents. Perhaps concreteness is helpful, but only for younger

learners. That is, if children under 12 years of age are in a
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concrete operational stage of development in which their think-

ing and problem solving are limited to concrete contexts, they

may need a concrete instantiation to begin to grasp an abstract

concept. In this case, we may see an advantage for the con-

crete. However, if the difficulty with concrete instantiation

stems from the effect of extraneous information on attentional

focus, then concreteness may be at least as detrimental for chil-

dren’s transfer as it is for adults’, since children are less able

to control their focus of attention (Dempster & Corkill, 1999;

Napolitano & Sloutsky, 2004). To test this possibility, we taught

11-year-old children either the concrete or the generic instanti-

ation and presented them with the transfer domain, as in our

earlier experiments. The concrete instantiation did result in

better learning than did the generic (82% vs. 66% correct).

However, for the concrete learners, transfer scores were only

marginally above the chance score of 38% (47% correct),

whereas scores were significantly above chance for the generic

learners (61% correct).

These findings make several important points. First, successful

learning does not necessarily translate into successful transfer.

Second, irrelevant perceptual richness of some concrete instanti-

ations can potentially hinder both learning and transfer. Third,

while some concreteness may give a leg-up in the learning pro-

cess, this advantage comes at the cost of transfer because the

learner has difficulty recognizing learned structure in novel con-

texts. Structure is learned but is bound to the initial learning sce-

nario. Generic instantiations, on the other hand, do allow

spontaneous recognition of learned structure and successful

transfer. Finally, the advantage of generic instantiations is not

limited to adults. Children can learn a generic instantiation and

successfully transfer their knowledge.

We suggest that a mechanistic component that underlies the

effect of concreteness on transfer is, in fact, attentional focus.

Successful analogical transfer is dependent on the ability to

focus on the common relation, while ignoring irrelevant informa-

tion, whether it is a simple relation such as ‘‘bigger than’’ or a

more complex relation, or set of relations, of a mathematical defi-

nition. Transfer fails if a common relation is undetected. Con-

crete instantiations present extraneous information that can

compete for attention with the relevant relational structure. With

development, the ability to ignore irrelevant information is likely

strengthened, which may explain improved performance with

age on simple symbolic tasks (e.g., DeLoache, 2000; Uttal et al.,

2009). At the same time, our studies demonstrate that

even adults can be distracted by irrelevant superficial informa-

tion. However, it is possible that with the development of exper-

tise, people learn (depending on the task demands) to

deliberately shift attention between superficial and deep struc-

tural information.

If a primary goal of learning abstract concepts such as mathe-

matical concepts is the ability to recognize novel instantiations

and successfully transfer knowledge, then educational material

should maximize the likelihood of attending to relational
Child Development Perspectives, Vo
structure and minimize the likelihood of diverting attention pri-

marily to the superficial. One way of achieving this is to present

mathematical concepts via generic formats, such as traditional

symbolic notation. Learning a generic instantiation can result in

portable knowledge that can be spontaneously transferred to

novel isomorphic domains. In addition, because generic instanti-

ations may help learners focus attention on relevant structure, we

would expect that learning generic instantiations may also benefit

transfer to nonisomorphic tasks such as those involving problem

solving, estimation, and comparison. We do not suggest that

concrete instantiations should never be used in the teaching of

mathematics. Rather, we suggest that if they are used, measures

need to be taken to help the learner extract the relevant structure

from the learning context and recognize it in novel contexts.
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