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In the context of introductory physics, we study student conceptual understanding of differentials,
differential products, and integrals and possible pathways to understanding these quantities. We developed
a multiple choice conceptual assessment employing a variety of physical contexts probing physical
understanding of these three quantities and administered the instrument to over 1000 students in first
and second semester introductory physics courses. Using a regression-based mediation analysis with
conceptual understanding of integration as the dependent variable, we found evidence consistent with a
simple mediation model: the relationship between differentials scores and integral scores may be mediated
by the understanding of differential products. The indirect effect (a quantifiable metric of mediation) was
estimated as ab ¼ 0.29, 95% CI [0.25, 0.33] for N ¼ 1102 Physics 1 students, and ab ¼ 0.27, 95% CI
[0.14, 0.48] for N ¼ 65 Physics 2 students. We also find evidence that the physical context of the questions
can be an important factor. These results imply that for introductory physics courses, instructional emphasis
first on differentials then on differential products in a variety of contexts may in turn promote better integral
understanding.
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I. INTRODUCTION

A. Physics integrals and their components

Students enrolled in a calculus-based introductory phys-
ics course encounter tasks inwhich theymust conceptualize,
construct, and compute an integral to obtain a physical
result, especially in the second semester of the standard
introductory sequence. In the past few decades, research in
both mathematics and physics education has demonstrated
that many students struggle with such tasks. Among
the earliest studies, Orton found that British students aged
16 to 22were usually capable of computing a Riemann sum,
but frequently lacked the conceptual foundation to explain
its meaning or relevance to integration [1]. Further inves-
tigations have revealed that studentsmay also have difficulty
recognizing when to employ an integral [2,3], as well as
determining what differential product (e.g., Fdx or vdt) to
accumulate [4] when constructing an integral.
In order to find ways to better address these fundamental

difficulties with integration, in this study we investigate
students’ physical and conceptual understanding of some
of the basic building blocks of integration, namely, differ-
entials and differential products, and how understanding

these concepts may lead to a physical and conceptual
understanding of integrals typically encountered in physics.
We begin with some justification for this approach.

1. Differentials and differential products

Several studies have discussed students’ treatment of the
differential quantity (e.g., dx or dt) in both mathematical and
physical contexts. In electrostatics, Nguyen and Rebello
considered that a lack of physical meaning associated with
the differential appeared to hinder student progress or change
the meaning of the integral expression entirely [4]. Doughty
et al. noted that students “may see dx as [simply] a
punctuation mark.” For many students, the differential could
be merely a notational convention to be appended on the end
of the integrand. Furthermore, while analyzing students’
reasoning about differentials through a series of case studies,
Hu and Rebello identified a variety of cognitive “resources”
(cf., Ref. [5]) that students may invoke while constructing
physical integrals [6]. Within the context of physics prob-
lems, the most productive and widely applicable resource
was that of the “small amount,” in which differentials are
conceptualized as very small (perhaps infinitesimally small)
intervals or amounts of physical quantities.
For convenience, we will use a “process-object layered

framework” for understanding physics integration.
According to Sfard, some mathematical elements can be
understood as both processes and (later) as structural objects
[7]. As an historical example, onemay examine the develop-
ment of subtraction (a process), which later produced the
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concept of negative numbers (objects). This was expanded
to the realm of calculus when Zandieh introduced several
layers of process objects in understanding the derivative [8].
Zandieh proposed a process-object layered framework for
conceptualizing derivatives, which included a ratio layer (at
the most basic level, a derivative is division, a quotient), a
limit layer (to shrink the denominator), and a function layer
(to yield analytical functions as derivatives). In this way,
each additional stage can be understood as both a verb and
a noun.
Integration can be similarly dissected into process-object

layers. In her development of a process-object layered
framework for Riemann sums, Sealey found that students
encountered the most difficulty setting up finite products
analogous to the (infinitesimal) differential product of an
integral [9]. Similarly, Jones found evidence that the crux of
making sense of contextualized integrals (such as those in a
physical scenario) may rest in the multiplicative relation-
ship between the integrand and the differential [10]. Jones
suggests that comprehending the physical meaning of a
differential product as a new, “resultant,” multiplicative
quantity to be summed with others like it could prove more
productive in physics integration, compared to more tradi-
tional notions of antiderivative and area under the curve
commonly taught in mathematics courses.

2. Summations of differential products

The findings above show that student success in physics
integration is at least partially tied to an understanding
of the differential, which may lead to success in physics
integrationwhenviewed as an infinitesimal physical amount
or interval, and differential products. But fundamentally,
integration is an accumulation of such quantities, and this
notion of “summation” is frequently referenced in the
existing literature. Introductory physics students may not
share this view, despite recent studies discussing its value to
contexts of physics and engineering [11]. Building on earlier
work by Meredith and Marrongelle [2], Doughty,
McLoughlin, and van Kampen investigated the cues that
coax students to attempt an integral solution in an inter-
mediate electromagnetism course [3]. Even at the post-
introductory level, they found that only 5% of student
participants demonstrated beliefs consistentwith integration
as a summation; their results suggested that, on the contrary,
the predominant view of integration was merely an evalu-
ation technique. Their results led to instructional changes to
introduce and highlight integration as an infinite summation.
To emphasize the understanding of each of these two

independent aspects of integral structure (the product and
the sum), Jones developed the multiplicatively based
summation (MBS) conception, defined as (i) the product
of the integrand and the differential to create a new quantity,
and (ii) the notion of adding up small (or infinitesimally
small) amounts of the resultant product through small (or
infinitesimally small) intervals of the domain to accumulate

a total quantity [10]. After further study, Jones found that
students were unlikely to use the MBS perspective to make
sense of physical integrals, even in particularly beneficial
scenarios, such as pressure integrated over an area to obtain
a total force,

R
A PdA

3. The process-object layered framework for
understanding physics integrals

Von Korff and Rebello developed a process-object
layered framework for understanding integrals (specifically
in the context of physics) reminiscent of that by Sealey [12].
It offers a variety of instructional paths for guiding student
learning towards understanding physics integrals. Their
“network” of layers differs from Sealey’s by also offering
strictly “microscopic” (infinitesimal) layers, such as differ-
entials and differential products, which can be summed to
produce “macroscopic” (finite) results. They assert that
physics students can be taught that “an integral is ‘the
sum of many infinitesimally small quantities,’without harm
to their understanding”.
According to Von Korff and Rebello’s model, along the

microscopic path to understanding integrals, the differential
product lies between the differential and integral (e.g.,
dt → vdt →

R
vdt). In our study, we hypothesize that this

chain suggests that conceptual understanding of differential
products “mediates” understanding of integrals. For a
discussion of regression-based mediation; see Sec. II D.
Although probably intuitive and credible to experts, the
veracity of such a relationship has not been quantitatively
established among a population of student participants, and
its potential existence could pose implications for physics
integration instruction. In the next section we describe how
mediation may be formally defined and measured.

B. Primary research objective

If mediation exists along the microscopic path of the
physics integration layered framework by Von Korff and
Rebello, students who better understand differentials (the
independent variable) would see gains in differential
product understanding as a result (as a mediator); likewise,
knowledge gains in differential products would be asso-
ciated with improvement in understanding of physics
integrals (the dependent variable).
Therefore, this paper will examine quantitative evidence

assessing the design of the “microscopic path” of the
process-object layered framework for understanding physics
integrals by Von Korff and Rebello. Specifically, we ask,
“does the evidence reveal a mediating relationship between
differentials and integrals, where the acting mediator variable
is the understanding of differential products?”

II. METHODS

A. Study participants

Data from this experiment were obtained from two
different student participant populations at the Ohio
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State University, a large research university. The first group
of students were enrolled in the second semester of the
standard calculus-based, introductory physics sequence
(“Physics 2”). Students in this group received course credit
for their participation in our research or an alternative
assignment if they declined consent for the study. Over
80% of students enrolled in the course participated in
at least some physics education research investigations;
N2 ¼ 65 of those participants were randomly selected for
this particular study. Each participant completed paper
tasks in a quiet testing room for no more than 55 min.
Data were obtained for a duration of two weeks with
approximately one-third of the semester remaining.
The second group of students were enrolled in the first

semester of the standard calculus-based, introductory
physics sequence (“Physics 1”). Research data was gath-
ered from students at the end of the semester via an online
assignment for course credit, with full credit for partici-
pation. While all enrolled students were required to
complete the assignment from which the data was taken,
only students who consented to the use of their results for
research purposes were included in this study’s data. In
total, N1 ¼ 1102 students comprise the Physics 1 group.
More than 90% of enrolled students chose to participate in
this study. Self-reported data regarding prior mathematics
courses indicate that 88% of Physics 1 participants have
already completed a standard Calculus 1 course in a
previous semester or in high school. Note that Calculus
1 is a corequisite course for Physics 1 at our institution;
however, our data suggest that most students already
have prior experience with calculus before enrolling in
Physics 1. Major discipline data are not available for
Physics 1 participants in this particular study, but prior
studies of the same population at our institution have
consistently shown that more than 70% of Physics 1
students self-report as engineering (of various types) or
physics majors. Note that demographics are similar for the
previously mentioned Physics 2 group.
Because of integration with course curriculum and the

strictly online nature of this assignment, many more
participants were utilized in the Physics 1 group compared
to the Physics 2 group, which instead required physical
attendance to complete a research activity. No time limit
was imposed for completion of the research task for this
group. Because these data were obtained from both Physics
1 and Physics 2 populations during the same semester, there
is no overlap in participation across groups.

B. Study and assessment design

To establish relationships between introductory physics
students’ understanding of differentials, differential prod-
ucts, and integrals, two assessment instruments were
developed and administered to each population. The two
instruments were very similar; only the physical contexts
were adjusted to best suit the physics topics relevant for

each course. The instruments consisted of two parts, with a
total of 26 multiple choice items for Physics 1 and 30
multiple choice items for Physics 2. The full assessments
are presented in the Supplemental Material [13].
The first half of the task consisted of “physical inter-

pretation” items presenting a given symbolic representation
of a differential, differential product, or integral (e.g., dt)
and asking the student to identify the correct physical
description (e.g., “An extremely short duration of time”).
Note that we used such conceptual and physical descrip-
tions as “extremely short” rather than “infinitesimally
small” because, in interviews, we found that the latter
phrase is often chosen because students remember seeing it
elsewhere, such as in math class, but are rarely able to
explain why they chose it. These “interpretation” questions
varied in physical context, with both concrete and generic
(“
R
AdB”) contexts. Examples of assessment interpretation

items are shown in Appendix A.
More specifically, the first half of the instrument began

with three items to assess the ability to interpret differ-
entials in three physical contexts; this was followed by five
(Physics 1) or six (Physics 2) questions relating to differ-
ential products in various contexts; finally, students were
given five (Physics 1) or six (Physics 2) questions pertain-
ing to integrals in various contexts. Note that for each
differential product item (e.g., vdt), there was a corre-
sponding integral item (e.g.,

R
vdt). The physical contexts

and symbolic representations from each question are shown
in Table I.
The second half of the instrument consisted of “units”

items. These items were identical to the items in the first
half, only the students were asked to identify the correct
units for a given differential, differential product, or
integral. Several examples are displayed in Appendix B.
The first half of the instrument was collected before the
second half was administered to prevent the students from
cross referencing, and perhaps changing, the answers from
the first half and the second half.
Together, with the interpretations scores for each set of

quantities, students were given a single score for each of

TABLE I. Categories and physical contexts of assessment
items for each population. Each quantity in the Physics 1 and
2 columns corresponds to two assessment items: a physical
interpretation question and an explicit units question, both
employing identical physical scenarios. For examples of indi-
vidual items, see Appendixes A and B.

Physical
quantity Physics 1 Physics 2

Differentials dt, dx, dM dt, dx, dq
Differential
products

vdt, adt, Fdx,
PdA, AdB

vdt, adt, qEdx, λdx,
ρπR2dx, AdB

Integrals
R
vdt,

R
adt,

R
Fdx,R

PdA,
R
AdB

R
vdt,

R
adt,

R
qEdx,R

λdx,
R
ρπR2dx,

R
AdB
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differentials, differential products, and integrals categories,
equally weighted across all physical contexts and inter-
pretation or units items. For example, a student who
correctly answered all differentials units questions, but
incorrectly answered all differentials interpretations ques-
tions, would receive a differentials score of 50%. There
were two reasons for choosing this scoring method. The
first is theoretical and conceptual: each assessment dimen-
sion (interpretations and units) represents an aspect of a
conceptual understanding of the quantity, namely, “what
kind of quantity it is” and “what it physically means.” Both
represent operational means of assessment of conceptual
understanding of the symbolic representations. The second
reason is empirical, namely, for a given quantity the scores
between the two dimensions were highly correlated, thus
supporting the validity of the scoring method, as is shown
in the next section.

C. Assessment validity and reliability

The assessment instruments were developed via our prior
work including several semesters of iterations of design,
implementation and item analysis, student interviews, and
adjustment, addition or removal of items based on the
results. Physical contexts and quantities were chosen based
on calculus expressions commonly found in introductory
calculus-based physics courses, and student interviews
verified the relevance of the expressions. Important dis-
tractors were derived from free response questions pertain-
ing to interpretations of differentials and differential
products, such as the incorrect notion that differentials
are “rates” or “derivatives” [14]. In addition, other incorrect
answer choices were produced from questions relating to
interpretations of integrals, such as the misconception that
the differential at the end of an integral is merely a label that
contributes neither meaning nor units to the integrand [15].
In both Physics 1 and Physics 2 studies, the assessment

instruments, as a total score as well as each individual
category score, were found to be statistically reliable. In
Table II, we display the reliability measure for differentials

questions, differential products questions, integral ques-
tions, and all questions (combined) for both populations of
participants. Within each set of questions pertaining to a
single physical quantity (e.g., differential products), we
find good internal consistency. Furthermore, no single
assessment item causes noticeably different or outlying
results if removed.

D. Regression-based statistical mediation

According to Baron and Kenny [16], “a given variable
may be said to function as a mediator to the extent that it
accounts for the relation between the predictor and the
criterion.” In simple mediation, a third variable exists as an
explanatory mechanism or process that underlies an
observed relationship between an independent variable X
and a dependent variable Y (see Fig. 1). By definition, a
mediator variable M exists causally between these two
variables, such that changes in X affect M, which then
affect Y. The following set of linear regression models is
used to assess whether mediation exists for these variables
via ordinary least squares regression:

Ŷ ¼ iY1
þ cX; ð1Þ

M̂ ¼ iM þ aX; ð2Þ

Ŷ ¼ iY2
þ bM þ c0X: ð3Þ

The symbols iY1
, iM, and iY2

are constants (or “inter-
cepts”) and a, b, c, and c0 are the regression coefficients
to be determined by ordinary least squares regression.
These equations are visually represented by the diagrams
in Fig. 1.
Baron and Kenny argued for a set of criteria to establish

the existence of a mediating relationship between these
three variables, which is frequently referred to as the

TABLE II. Assessment reliability statistics. Cronbach’s α is
shown for both the Physics 1 and Physics 2 populations for each
set of assessment items. Below each Cronbach’s α, we show the
number of items for each physical quantity from both assessments.

Physical quantity Physics 1 Physics 2

Differentials 0.843 0.807
Items: 6 Items: 6

Differential products 0.863 0.877
Items: 10 Items: 12

Integrals 0.790 0.826
Items: 10 Items: 12

All 0.913 0.909
Items: 26 Items: 30

FIG. 1. Top: A visual representation of the total effect of a
simple mediation model. Mathematically, this is shown in Eq. (1).
Bottom: A visual representation of the indirect and direct effects
of a simple mediation model. Mathematically, this is shown in
Eqs. (2) and (3).
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“causal steps approach” [17]. We will describe this strategy
to help intuitively explain mediation, but we will also
discuss a more rigorous approach later in this section. In
the causal steps approach, a significant “total effect” is
obtained when a regression analysis returns a value for
the coefficient c in Eq. (1) that is statistically different
from zero. This establishes an overall relationship between
variables X and Y. Next, a statistically significant value of a
in Eq. (2) suggests a relationship between the independent
variable X and the suspected mediator M. Finally, by
Eq. (3), if the coefficient b is significantly different from
zero, while c0 (known as the “direct effect”) is closer to zero
than c (or statistically indistinguishable from zero), then
mediation is said to exist via M between X and Y. The
final step demonstrates the diminished direct relationship
between X and Y, while controlling for the effect of M.
This intuitive and straightforward recipe for determining

the existence of mediation has been popular for several
decades, but carries with it several drawbacks making it
undesirable for use as an analysis tool in this paper. For an
excellent argument, we recommend Hayes and Rockwood
[17]. To summarize, philosophically, an empirical claim
should be supported quantitatively by the effect most
directly pertinent to that claim, particularly in as few
inferential steps as necessary to minimize compounding
uncertainty. In the case of mediation, establishing the
existence of a nonzero “indirect effect” of X on Y through
M is sufficient; this is achieved by finding a statistically
significant product of regression coefficients ab, which
define the visual path from X to M to Y as seen in Fig. 1.
Furthermore, while the causal steps approach may still

be informative in mediation analysis, it cannot convey an
expression of confidence or uncertainty in the principal
quantity of interest, the indirect effect ab. By contrast, the
bootstrap resampling technique (or “bootstrapping”) calcu-
lated by the PROCESS macro for the SPSS statistical
software [18] can provide a confidence interval for the
indirect effect [19]. Bootstrapping employs several thou-
sand iterations of random sampling with replacement from
an existing data sample to model inference about a
population. Through successive resampling simulations,
measures of accuracy can be obtained for sample estimates,
including confidence intervals for the indirect effect ab in
mediation. Moreover, unlike other popular statistical meth-
ods, the reliability of bootstrapping is not contingent on
normally distributed samples. This is a crucial benefit, as
the sampling distribution of an indirect effect is not likely
to be normal [20].

III. RESULTS AND DISCUSSION

A. Descriptives statistics

Descriptive statistics for each of the three scores (differ-
entials, differential products, and integrals) for each pop-
ulation are displayed in Table III. Participants from the

Physics 2 population were seen to significantly outperform
students from Physics 1 in all three sets of assessment
items pertaining to each physical quantity: differentials,
Fð1 1165Þ ¼ 31.4; p < 0.001; d ¼ 0.81; differential prod-
ucts, Fð1 1165Þ ¼ 50.5; p < 0.001; d ¼ 0.89; integrals,
Fð1 1165Þ ¼ 32.5; p < 0.001; d ¼ 0.79. This difference
could be explained by several factors, including population
differences between Physics 1 and Physics 2 due to attrition
from grades or major requirements, as well as mathematics
experience and background. In any case, this result is
presented for informative purposes only, and will not be a
principal focus in the following sections.
A more interesting feature was observed upon analyzing

Table III between rows. By inspection, it is clear that mean
scores on the set of differential products questions were
lower in both populations than differentials and integral
scores, which were comparable within each course. In the
absence of other competing factors, and with a significant
indirect effect (that is large compared to the Direct Effect)
from our hypothesized mediation model, one might rea-
sonably predict that integral scores would be lower than (or
at best equal to) differential products scores, which would
be in turn lower than differential scores. This expected
cascading effect of scores could be explained by the fact
that many students may successfully demonstrate under-
standing of differentials, but only some subset of those
students could successfully answer differential products
questions, and even fewer could demonstrate success on all
three topics. To the contrary, our results do not show this.
To verify this apparent contradiction of our expectation,

a paired-samples t test was performed using a within-
student design on differential products scores and integral
scores. From this, we observed that integral scores
significantly exceeded differential products scores (in both
populations of participants): Physics 1, tð1101Þ ¼ 25.7;
p < 0.001; d ¼ 0.77; Physics 2, tð64Þ ¼ 3.2; p ¼ 0.002;
d ¼ 0.40.
This surprising result prompted us to consider instances

in which students could correctly answer questions about
an integral but not its corresponding differential product
(within identical contexts) (e.g., correctly interpretingR t2
t1 vdt but not vdt, or correctly identifying the units ofR
x2
x1
Fdx but not Fdx, etc.). We found that this possible

inconsistency with our proposed model occurred in 27% of

TABLE III. Assessment descriptive statistics. Mean scores with
1 standard error are shown for both the Physics 1 and Physics 2
populations for each set of assessment items.

Physical quantity
Physics 1
(N ¼ 1102)

Physics 2
(N ¼ 65)

Differentials 47%� 1% 73%� 4%
Differential products 32%� 1% 59%� 4%
Integrals 51%� 1% 71%� 3%
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responses from Physics 1 students, and 20% of responses
from Physics 2 students. In other words, a fifth or more of
student responses in both populations demonstrated con-
ceptual understanding of an integral, but not its differential
product. These results could be seen to run counter to our
mediation model, at least for the case of zero or very small
direct effects. In Sec. III C, we will present evidence
supporting a possible explanation: for some contexts that
are apparently common and familiar, students may be able
to succeed on integral questions in spite of lower differ-
ential products performance.

B. Mediation from differential products

Student understanding of differential products (with
variable name “DP”) is hypothesized to act as a mediator
between the understanding of differentials (“D”) and
integrals (“Int”) in the context of introductory physics.
To assess the existence of this mediation, the following
linear regression models were selected, based on those
shown in Eqs. (1)–(3):

cInt ¼ i1 þ cD ð4Þ

cDP ¼ i2 þ aD ð5Þ

cInt ¼ i3 þ bDPþ c0D ð6Þ

Using the PROCESS macro for the SPSS statistical software
discussed in Sec. II D and k ¼ 10 000 bias-corrected boot-
strap samples, a statistically significant indirect effect was
observed in both populations at the α ¼ 0.05 level. For
N ¼ 1102 participants in the Physics 1 group, we observed
an indirect effect of ab ¼ ð0.55Þ × ð0.53Þ ¼ 0.29, 95% CI
[0.25, 0.33]. Similarly, for N ¼ 65 participants in the
Physics 2 group, we observed an indirect effect of
ab ¼ ð0.60Þ × ð0.46Þ ¼ 0.27, 95% CI [0.14, 0.48].
Because of the bootstrap confidence intervals (neither of
which include zero in their range), we are 95% confident that
the indirect effect in both populations is greater than zero,
and thus that mediation exists for this set of variables among
both participant groups. The regression model coefficients
for both populations are displayed in Table IV.
Among Physics 1 participants, due to large sample size,

all regression coefficients were seen to be significant at the
α ¼ 0.05 level. From this, we identified a significant total
effect (c ¼ 0.38� 0.02) and a significant direct effect
(c0 ¼ 0.09� 0.02), although the latter is a considerably
smaller effect than the indirect effect (ab ¼ 0.29� 0.02)
mentioned above. Apparently, as suggested by these data,
improvement in differentials understanding is not directly
associated with large improvements in students’ abilities to
understand integrals, relatively speaking. Instead, there is
strong evidence that increased performance on differentials

is related to increased performance on differential products,
which is thereby related to gains in integral score.
In Physics 2, the sample size was only 6% of the former

group. Consequently, we did not identify a significant
direct effect (c0 ¼ −0.07� 0.11); if one exists, there was
insufficient statistical power to discover it. Therefore, we
cannot conclude from this sample that improvement in
differentials understanding has a significant direct relation-
ship with integral understanding. However, a significant
total effect (c ¼ 0.20� 0.10) was observed among
Physics 2 participants. Again, it is the indirect effect
(ab ¼ 0.27� 0.09) that dominates this model. The data
suggest that differentials gains are associated with differ-
ential products gains; likewise, higher differential products
scores are associated with higher integral scores.
In Fig. 2, we summarize our findings by displaying the

visual representation of the model discussed above, includ-
ing regression coefficients.

TABLE IV. Linear regression model coefficients. Means with 1
standard error are shown for both the Physics 1 and Physics 2
populations for each regression coefficient from Fig. 1.

Model coefficient Physics 1 (Sig.) Physics 2 (Sig.)

a 0.55� 0.02 0.60� 0.10
ðp < 0.001Þ ðp < 0.001Þ

b 0.53� 0.03 0.46� 0.11
ðp < 0.001Þ ðp < 0.001Þ

c 0.38� 0.02 0.20� 0.10
ðp < 0.001Þ ðp ¼ 0.040Þ

c0 0.09� 0.02 −0.07� 0.11
ðp < 0.001Þ ðp ¼ 0.521Þ

FIG. 2. Top: A visual representation of the total effect of our
simple mediation model. The regression coefficient estimating
the total effect is shown for both Physics 1 and Physics 2
populations as c1 and c2, respectively, with 1 standard error.
Bottom: A visual representation of the direct and indirect effects
of our simple mediation model. The regression coefficients are
shown for both Physics 1 and Physics 2 populations with
subscripts “1” and “2,” respectively, with 1 standard error.
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C. Possible moderation from context familiarity

During the analysis process, we observed that the
indirect effects for several individual physical contexts
appeared to differ (nominally, if not significantly) from
each other depending on the scenario provided in the
problem statement. The same linear regression models
shown in Eqs. (4)–(6) can be used to compute the indirect
effect for a single individual context featured on our
assessment (see Table I), such as velocity vs time, in
which the differential, differential product, and integral
assessed were dt, vdt, and

R
vdt, respectively. Among

physical contexts with which students were likely very
familiar (e.g.,

R
vdt), we generally observed lower indirect

effects. Contrastingly, physical contexts that were pre-
sumed less familiar to students (e.g.,

R
ρπR2dx) tended

to have slightly higher indirect effects. This information is
summarized in Table V.
The notion that familiarity may play some role in how

students arrive at their understanding of a physical integral
is not unreasonable. After all, for a familiar context,
students might access other resources to choose an answer
instead of using the chain of reasoning from differentials to
differential products to integrals studied here. For example,
some students may simply directly recall from their current
or past math and physics courses that the commonly used
collection of symbols

R
vdt represents a displacement

when written in that order, but they may not be able to
correctly interpret the meaning of the differential product
vdt perhaps because it is less commonly encountered
without the integral sign. This type of performance could
weaken the indirect effect in contexts where familiarity is

already sufficient for interpretation of the integrals, but not
the differential products. On the other hand, some physical
contexts and their respective integrals may be completely
foreign to students, such as

R
ρπR2dx. In this case, students

would find more success comprehending the meaning of
the differential product in order to make sense of the
integral, which could strengthen the indirect effect for less-
familiar questions.
In a later semester, we polled N ¼ 106 Physics 2

students in their first month of the course, that we might
better understand prior experience and familiarity with the
integrals assessed in our study from the perspective of
introductory physics students. These students were not
previously participants in our Physics 2 mediation study;
however, their mean familiarity scores to the prompt,
“How would you rank your familiarity with the following
quantity? (1 ¼ “Not at all familiar with this quantity” and
5 ¼ “Very familiar with this quantity”)” were used to rank
the student-perceived familiarity of the integrals used in the
assessments. This between-students design is not suited to
perform robust statistical tests on context as a moderating
factor, but it can provide some qualitative insight into the
role of familiarity as an influencing factor in our mediation
model. We therefore display Fig. 3, which pairs mean self-
reported familiarity of our assessment integrals with the
indirect effects shown in Table V, measured from the
mediation study. Because of the large size of the error
bars (each shown as one standard error), particularly among
the Physics 2 mediation sample, broad claims cannot be
made, but nominal indirect effect values generally align
with our hypothesis that the indirect effect decreases with
increasing familiarity.

TABLE V. Standardized indirect effects ab estimated with 1
standard error for each model or context separately, where each
model is of the form dt → vdt →

R
vdt. Later, an independent or

unrelated sample of early-semester Physics 2 students reported
familiarity for each integral shown (“1” to “5,” higher number
indicates more familiar); familiarity is displayed in parentheses
with 1 standard error.

Model or context Physics 1 Physics 2

dt → vdt →
R
vdt 0.12� 0.02 0.12� 0.09

ð4.5� 0.1Þ ð4.5� 0.1Þ
dt → adt →

R
adt 0.13� 0.02 0.08� 0.08

ð4.4� 0.1Þ ð3.9� 0.1Þ
dx → Fdx →

R
Fdx 0.18� 0.02 0.24� 0.10

ð4.4� 0.1Þ ð3.3� 0.1Þ
dx → λdx →

R
λdx 0.19� 0.09

ð3.5� 0.1Þ
dx → PdA →

R
PdA 0.27� 0.02

ð3.2� 0.1Þ
dx → ρπR2dx →

R
ρπR2dx 0.33� 0.13

ð3.2� 0.1Þ

FIG. 3. Horizontal: Mean self-reported familiarity with each
physical context from Table V. Vertical: Completely standardized
indirect effect for each physical context from Table V. One
standard error shown for both dimensions. Blue symbols re-
present contexts presented to Physics 1 students. Red symbols
represent contexts presented to Physics 2 students. Note that
familiarity scores were obtained from a separate sample of
Physics 2 students in a later semester.
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To further support the claim that high familiarity seems
to reduce the role of differential products as a mediator in
correctly answering the conceptual questions on integrals,
we returned to the data described in Sec. III A from our
mediation study to compare individual physical contexts in
which students demonstrated conceptual understanding of
a given integral, but not its differential product. These data
are presented in Table VI.
As seen in Table VI, students were most capable of

correctly answering integral questions about those
contexts with which they were most familiar (

R
vdt in

both Physics 1 and Physics 2). But of particular importance,
we note that they were most able to answer these integral
questions even when unable to answer nearly identical
different products questions, as long as the context was
familiar. When the context was apparently most foreign
(
R
PdA in Physics 1 and

R
ρπR2dx in Physics 2), students

were much less likely to make correct physical sense of the
integral without the corresponding differential product.
In fact, we found that only 14% of Physics 2 responses

were correct for
R
ρπR2dx items and simultaneously

incorrect for ρπR2dx items (rated the least familiar
Physics 2 assessment context in our poll), whereas 25%
of Physics 2 responses were correct for

R
vdt items and

simultaneously incorrect for vdt items (rated the most
familiar Physics 2 assessment context in our poll). A chi-
squared test showed that this difference was significant at

the α ¼ 0.05 level for Physics 2 students: χ2ð4; 65Þ ¼ 19.3;
p ¼ 0.001, with an effect size of (Cramér’s) V ¼ 0.39—a
large-sized effect.
Likewise, we also found that only 14% of Physics 1

responses were correct for
R
PdA items and simultaneously

incorrect for PdA items (rated the least familiar Physics 1
assessment context in our poll); but again, this was
contrasted by 44% of Physics 1 responses that suggested
understanding of

R
vdt without understanding vdt. Once

more, a chi-squared test showed that this difference was
significant at the α ¼ 0.05 level for Physics 1 students:
χ2ð4; 1102Þ ¼ 37.8; p < 0.001, with an effect size of
(Cramér’s) V ¼ 0.13—a small-to-medium-sized effect.
To summarize, our data illustrate that for the least

familiar physical contexts, integral success is most paired
with understanding of its corresponding differential prod-
uct; the opposite (which is counter to our mediation model)
appears to be true in the most familiar contexts.
In statistical terms, whereas mediation attempts to

address how an independent variable X affects a dependent
variable Y, the hint of familiarity may be better understood
as “moderation”—when and to what degree X affects Y.
A detailed discussion of moderation analysis is provided
by Hayes and Rockwood [17]. The data presented in this
paper do not permit a rigorous moderation analysis that
might conclusively determine the effect of familiarity on our
simple mediation model. Instead, a within-student design
including familiarity ratings is needed. Nevertheless, our
results do support the hypothesis that such moderation exists
and warrants further study.

IV. CONCLUSIONS AND IMPLICATIONS
FOR INSTRUCTION

Von Korff and Rebello devised a process-object layered
framework with a network of possible paths to under-
standing of physics integrals. Along the “microscopic path”
(using differentials to build integrals; e.g., dt → vdt →R
vdt), differential products are situated between differ-

entials and integrals. We hypothesized that mediation via
understanding of differential products may be present in the
relationship between the assessment scores of differentials
and integrals; this model is illustrated by Fig. 2. Among
independent student populations (Physics 1 and Physics 2),
our results are consistent with mediation via differential
products understanding. Specifically, neither of the
95% confidence intervals estimating the indirect effect
ab included zero; this is shown in Sec. III B.
If mediation exists along the microscopic path to under-

standing physics integrals in the manner suggested by our
results, on average, students would find more success from
instruction that follows the progression formulated by Von
Korff and Rebello (i.e., dt → vdt →

R
vdt). In particular,

because of the very small (or possibly nonexistent) direct
effect (c0) from Table IV, simply emphasizing the meaning

TABLE VI. Percentage of students demonstrating conceptual
understanding of most- and least-familiar differential products
and integrals in both Physics 1 and Physics 2. In the most familiar
context (

R
vdt in both Physics 1 and Physics 2), students were

more likely to make correct physical sense of the integral while
failing to make sense of its differential product, when compared
to the same task in the least familiar contexts (

R
PdA in Physics 1

and
R
ρπR2dx in Physics 2). These data support the hypothesis

that familiarity is being used to prop up correctness when
possible, but when context is no longer accessible from memory
or prior experience, students who are unable to demonstrate
understanding of the differential product are less likely to
demonstrate understanding of its corresponding integral.

Context Physics 1 Physics 2

vdt 25%� 1% 60%� 4%R
vdt 66%� 1% 79%� 4%

Correct
R
vdt and

incorrect vdt
44% of students 25% of students

PdA 25%� 1% � � �R
PdA 33%� 1% � � �

Correct
R
PdA and

incorrect PdA
14% of students � � �

ρπR2dx � � � 52%� 5%R
ρπR2dx � � � 58%� 5%

Correct
R
ρπR2dx

and incorrect ρπR2dx
� � � 14% of students
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and units of the differential may have no effect on students’
ability to make sense of the integral. However, compre-
hension of physics differentials may prove beneficial in
promoting understanding of the differential product,
whose instruction may ultimately lead to better integral
understanding.
We also find evidence that familiarity can play an

important role in understanding integrals. Specifically,
the results support the idea that for novel, unfamiliar
integrals, instruction emphasizing the microscopic path
mediated by understanding differential products may be
an effective method. For more familiar integrals, it is clear
that some students may have bypassed important under-
standing of the components of the integral while still
having a general idea of the whole integral itself. This
finding may also be useful for designing instruction, noting
that the instructional method may benefit from adapting to
the student familiarity with the integral of interest.
Finally, it is worth noting that ultimately, mediation

models imply an assumed causal relationship. While our
results are consistent with mediation via differential products
understanding, we would also recommend a controlled
experiment involving treatments in the form of instructional
interventions to measure the indirect, direct, and total effects
discussed in our simple mediation model. Such a study could
probe the causal nature of the model, which was an
assumption made in this study (in which all students were
assessed on all topics without instructional intervention), as
demonstrated by the direction of the arrows shown in Fig. 2.
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APPENDIX A: SAMPLE ASSESSMENT
ITEMS: INTERPRETATION

Examples of assessment interpretation questions are
shown below. Each question presents participants with a
physics differential, differential product, or integral to
correctly interpret from several possible choices.
(1) A stopwatch is used to measure time t (in seconds)

as a car moves. Which of the following best
describes dt?
(a) The time on the stopwatch at the moment the car

starts moving.
(b) The rate (at a single moment) that the car’s

position changes as time passes.
(c) The rate (at a single moment) that time passes.
(d) An extremely small change in time.
(e) A change in time large enough to measure on the

stopwatch.

(2) An electron in a magnetic field experiences an
acceleration a (in meters=second2) at time t (in
seconds). Which of the following best describes adt?
(a) The acceleration of the electron at a single

moment.
(b) The rate (at a single moment) the electron’s

acceleration is changing as time passes.
(c) The rate (at a single moment) the electron’s

velocity is changing as time passes.
(d) An extremely small change in the electron’s

velocity
(e) The velocity of the electron at a single moment.

(3) Acar is traveling in a straight line.Between times t1 and
t2 (in seconds), it has velocity v (in meters/second).
Which of the following best describes

R t2
t1 vdt?

(a) The total velocity of the car between t1 and t2.
(b) The total change in the car’s position between t1

and t2.
(c) The average velocity of the car between t1 and t2.
(d) The total change in the velocity of the car

between t1 and t2.
(e) The average position of the car between t1 and t2.

APPENDIX B: SAMPLE ASSESSMENT
ITEMS: UNITS

Examples of assessment units questions are shown
below. Each question presents participants with a physics
differential, differential product, or integral whose units
they must correctly identify from several possible choices.
(1) A stopwatch is used to measure time t (in seconds)

as a car moves. Which of the following shows
possible units for dt?
(a) meters/second
(b) No units
(c) seconds/meter
(d) 1/second
(e) seconds

(2) An electron in a magnetic field experiences an accel-
eration a (in meters=second2) at time t (in seconds).
Which of the following shows possible units for adt?
(a) meters=second2

(b) meters=second3

(c) meters/second
(d) meters
(e) No units

(3) A car is traveling in a straight line. Between times t1
and t2 (in seconds), it has velocity v (in meters/
second). Which of the following shows possible
units for

R t2
t1 vdt?

(a) No units
(b) meters/second
(c) meters
(d) meters · seconds
(e) meters=second2
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