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Abstract:  Introductory university physics frequently requires students to construct integrals. To explore students' 
abilities with this skill, we administered a simple physics problem requiring the construction of an integral to students 
enrolled in calculus-based introductory physics. Half of these students received written questions intended to scaffold 
construction of the integral, and the other half were not provided with scaffolding. Results indicate a strong interaction 
between scaffolding and student course grade. Specifically, students whose final class grade was above the median 
benefited significantly from the scaffolding, but students with grades below the median were not helped by the 
scaffolding. We also searched for other knowledge and skill factors that may inform instruction to improve integral 
construction skills, including spatial reasoning and conceptual understanding of the integral. Moderate, independent 
correlations with integral score were found for each, suggesting that instruction in these areas may positively influence 
performance. 
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INTRODUCTION 
 

Integration is a common mathematical technique 
utilized in introductory university physics courses. 
While this skill is usually required learning in 
accompanying calculus courses, students may have 
trouble mapping their knowledge from mathematics to 
the context of physics to solve problems. Research 
conducted over the past few decades has shed light on 
this and other common difficulties many students face 
when attempting to solve integration problems in 
physics. 

A common theme among the existing literature on 
this topic is a lack of fundamental understanding about 
the nature of an integral. Orton found that the majority 
of students (ages 16-22) in a British study did not 
recognize the integral as a limit of an infinite sum of 
products, or Riemann sum, though many were capable 
of computing the sum when asked [1]. Furthermore, 
Grundmeier et al. surveyed 52 students and found that 
their knowledge of the definition of the integral was 
independent of their ability to calculate its result [2]. 
They stated that students were able to “perform 
integration as a procedure with limited understanding 
that they are finding the area under the curve and that 
this area is being found as a limit of estimation for that 
area.” Building on the work of Thompson and 
Silverman, who suggested that integration be 
emphasized in “layers,” Nguyen and Rebello proposed 
four necessary steps to correctly use an integral in 
physics [3]. The steps include recognizing the need of 
an integral, correctly expressing the infinitesimal 

quantity to be summed, accumulating the 
infinitesimals, and computing the integral. In each step, 
they sought common difficulties among their student 
participants. They concluded that setting up the proper 
infinitesimal expression to be summed gave students 
significant trouble and sought to create tutorials to 
emphasize the meaning of the differential term (e.g., 
dx, dθ, dt,…). In our present study, we found evidence 
that scaffolding within the problem similarly aimed at 
conceptual comprehension of the infinitesimal quantity 
may be ineffective for students whose physics course 
grade fell below the class median. 

Another possible avenue of intervention to aid low-
grade students may be through spatial reasoning, such 
as the ability to mentally rotate 3D objects or carve 2D 
slices. Recent studies have found that spatial reasoning 
could be a primary obstacle to success in various 
STEM disciplines [4][5]. Moreover, correlation studies 
have determined that achieving success in some STEM 
fields is at least partially dependent on mental rotation 
and perspective taking [6][7][8]. 

In this study, we investigate how spatial reasoning 
ability and/or conceptual understanding may be tied to 
physics integration skills, particularly as a means of 
addressing the needs of low-grade students. We look 
for correlations and hierarchical relations between 
these skills to determine whether spatial or conceptual 
instruction might aid physics integration scores. 
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METHODS 

A total of 190 students participated in this study. 
All students were enrolled in the second semester of a 
calculus-based, introductory physics course at Ohio 
State University, a large public research institution. 
Students received course credit as part of their 
homework grade for participation in this assignment or 
an alternative assignment if they declined participation 
in the study. Over 95% of students in the class 
participated. Each student participant was instructed to 
complete a variety of computer and/or paper tasks in a 
quiet testing room for no more than 55 minutes. This 
particular study was conducted with written responses 
on paper.  

Each student was given a short physics integral 
question, which featured a solid cylinder with a given 
mass density that varied along the length of the object 
(Fig. 1). The students were expected to setup but not 
compute an integral representing the total mass of the 
cylinder. In addition, a conceptual question (part a) 
asked each student whether the left third, middle third, 
right third, or none of the above would be heaviest if 
the cylinder were uniformly sliced into three smaller 
cylinders of equal length (called the “Heavy Slice” 
question).  

Participants were randomly assigned to one of two 
conditions. The scaffolding condition received 
questions as shown in Figure 1, including part b, which 
steps the participants through a series of questions to 
(presumably) help them build the integral. The no 
scaffolding condition received an identical problem but 
were only given Parts c and a in that order. An integral 
score was computed to assess performance on Part c; 
students were given a maximum of 100% if they 
correctly included the integral boundaries (25%), the 
cross sectional area of the cylinder (25%), the length 
dx of an individual slice of the cylinder (called the 
“differential;” 25%), and the mass density of the 
cylinder (25%). This integral score was graded 

holistically; for example, if any two of the four criteria 
were included, a score of 50% would be awarded. 

Following the physics integration question, every 
student received a spatial reasoning test. This study 
used the Santa Barbara Solids Test (SBST)[9] for the 
first 123 students and the Purdue Spatial Visualization 
Test: Visualization of Rotations (PSVT:R)[10] for the 
final 67 students. Multiple spatial reasoning tests were 
utilized in order to ascertain possible correlations 
between physics integration and distinct spatial skills. 
The SBST requires students to mentally slice a 2D 
carving from a 3D object to produce a cross section. 
This is a skill that is conceptually similar to one 
utilized in the physics integral test in this study. The 
PSVT:R, by contrast, features a variety of 3D objects 
and requires students to mentally rotate each object to 
produce the correct orientation. The SBST was scored 
out of 29 possible correct answers and the PSVT:R 
was scored out of 30. A one-way ANOVA found no 
significant differences in final course grade between 
students who received the SBST and those who 
received the PSVT:R (F(1)=0.656, p=0.419).  

RESULTS & DISCUSSION 

Effect Of Scaffolding 
 

A noteworthy quantity that guided the course of 
this study was the scaffolding condition integral score 
of students whose final physics grade fell below the 
class median (called “low-grade” students). A total of 
41 low-grade students received the scaffolding 
condition; 20 of these students (48%) had better than a 
50% integral score. By contrast, 46 low-grade students 
received the no scaffolding condition, with 29 of them 
(63%) scoring above a 50% on the integral question. 

In a two-way ANOVA using both final course 
grade and integral test condition as independent factors 
on the integral score as the dependent variable, we 
(unsurprisingly) found a main effect that low-grade 

FIGURE 1. Physics integration question including scaffolding questions b. i.-iv. 

24



students had lower integral scores than high grade 
students (F(1)=9.075, p=0.003, η 2=0.047). However, 
we also found a significant interaction effect between 
course grade and integral test condition (F(1)=6.683, 
p=0.011, η 2=0.035). Specifically, low-grade students 
scored virtually the same as high-grade students in the 
no scaffolding condition (65% vs. 70%, d=0.25), but 
scored much lower than the high-grade students in the 
scaffolding condition (63% vs. 85%, d=0.81). 

This interaction can be seen in Figure 2. The 
scaffolding increased the performance of high-grade 
students, but it had no (or possibly negative) effect on 
low-grade students. One possible explanation for this 

result is that scaffolding may be meaningful to students 
with deeper understanding of physics and mathematics, 
but for students who are struggling already, the extra 
layers of guidance may only confuse them and 
confound any prior understanding. This could affect 
the type of instruction needed to reach the low-grade 
students in order to improve their understanding and 
success in physics integrals. In the next section, we 
will further explore the conceptual understanding as a 
means of addressing the needs of low-grade students. 

 
Investigating The Influence Of 
Conceptual Understanding  

 
A possible pathway to integral score improvement 

is through conceptual understanding of the problem. 
The “Heavy Slice” question from the integral test (part 
a of Fig. 1) assesses a student’s comprehension that the 
mass density varies, an important concept for 
understanding the meaning and necessity of integration 
in this task. While some students may have had trouble 
interpreting 𝜌 𝑥  and its direction of increase, we 
found that 90 of the 114 incorrect Heavy Slice 
responses simply invoked uniform density. If 

understanding (hence instruction) the variable density 
concept were necessary for accurate construction of the 
integral, we would expect that students with high 
integral scores would more frequently answer the 
Heavy Slice question correctly rather than incorrectly.  

 
TABLE 1. Conceptual "Heavy Slice" Question cross-

tabulated with Integral Score. "Low" Integral Score implies 
50% correct or below; "High" is greater than 50% correct. 
Both integral test conditions are combined. Both scaffolding 
conditions are combined. 

 

 
Integral Score 

Low High 

Low-Grade Students Only 

Heavy Slice Question 

Wrong 31 25 

Right 7 24 

All Students 

Heavy Slice Question 

Wrong 46 59 

Right 14 61 
 

The results shown in Table 1 do not demonstrate 
this expected relationship. For low-grade students, we 
find that 25 participants obtained a high integral score 
while incorrectly answering the conceptual question, 
compared with 24 students earning a high integral 
score and correctly answering the conceptual question. 
This implies that a high score is attainable regardless of 
a student’s understanding of the concept in the 
problem. This independence is seen across the entire 
sample of students (59 students answered the 
conceptual question incorrectly; 61 students answered 
it correctly; all earned a high integral score). Notably, 
students who correctly answered the conceptual 
question were far more likely to obtain an overall high 
integral score (24/31 for low-grade students; 61/75 for 
all students). Furthermore, students who incorrectly 
answered the integral question were very likely to 
answer the conceptual question incorrectly (31/38 for 
low-grade students; 46/60 for all students. These 
results imply that correctly setting up a physics integral 
may be a pre-requisite to understanding its meaning, 
rather than the reverse. This result seems to agree with 
the findings of Orton and Grundmeier et al. In sum, 
understanding the “heavy slice” concept is not 
necessary for correctly constructing an integral, but 
since a large proportion students who answer the 
concept question correctly also construct the integral 
correctly, it may be sufficient. Nonetheless, it is not 
clear that instruction on the “Heavy Slice” concept will 
improve performance on integration. Instead, these 
results indicate that such conceptual understanding is 
either hierarchically at a higher level than constructing 
an integral, or knowledge other than conceptual 
understanding is needed.   

FIGURE 2. Integration score versus scaffolding conditions for 
both low- and high-grade students. Error bars are ± 1 SE. 
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Investigating The Influence Of Spatial 

Reasoning 
 
Another possible avenue towards enhanced physics 

integration scores is spatial reasoning instruction. If 
correlations can be found between physics integration 
score and various spatial reasoning skills, it may 
suggest a hierarchy by which improved spatial 
reasoning leads to higher performance in integration.  

The Santa Barbara Solids Test, administered to the 
first 123 student participants, demonstrated a weak 
correlation (R=0.227) with the integral test score. 
Table 2 shows the cross-tabulation between SBST 
score and physics integral score. A “High” SBST score 
signifies the student performed higher than the median 
score (med=24 out of 29 questions correct). These data 
do not demonstrate an obvious hierarchy of 
intervention. Because students who scored low on the 
SBST performed about equally poorly and well on the 
integral test, we find that the ability to produce mental 
cross sections of 3D objects may not be a pre-requisite 
to correctly setting up the physics integral from this 
study.  

 
TABLE 2. Spatial reasoning scores cross-tabulated with 
Integral Score. “High” SBST/PSVT:R Score refers to the 
number of student scores above the median. "High" Integral 
Score implies greater than 50% correct. Both scaffolding 
conditions are combined. 

 Integral Score 

Low            High 

SBST Score 
Low 26 31 

High 11 23 

PSVT:R Score Low 11 17 

High 6 19 
 
Additionally, the Purdue Spatial Visualization 

(Rotations) Test provided a moderate correlation 
(R=0.370) when compared with physics integral score. 
Table 2 shows a similar cross-tabulation between 
PSVT:R score and integration score. Once again, a 
“High” PSVT:R score is considered above the median 
(med=25 out of 30 questions correct). In spite of 
smaller statistics, a comparable pattern emerges again, 
wherein a student has a greater chance to obtain a high 
integral score even if the PSVT:R score is low. 
Likewise, students who score above the median on the 
PSVT:R are much more likely to score highly on the 
integration test than their peers who scored lower on 
the PSVT:R. This suggests that the ability to mentally 

rotate 3D objects may not be a pre-requisite to 
successfully setting up a physics integral. 

 
CONCLUSION 

 
This study found an important interaction:  students 

whose final course grades fell below the median were 
clearly not helped by scaffolding questions intended to 
aid in the construction of a physics integral. By 
contrast, the high-grade students significantly 
benefitted from scaffolding on the integral construction 
task.  

In order to determine possible avenues to enhance 
the physics integration ability of low-grade students, 
we also compared student performance on the integral 
task with performance on a conceptual/physical 
understanding task and standard spatial ability tasks. 
While there were correlations with performance on 
integrals, neither conceptual understanding nor spatial 
ability was found to be necessary: many students could 
correctly construct the integral but did poorly on 
conceptual understanding or spatial ability. Still, a 
large fraction of students who performed well on these 
tasks also did well on the integration task, and this 
suggests that instruction on these tasks might help 
performance on construction of an integral. Clearly, 
this is an empirical question that can only be answered 
in a controlled experiment via instructional 
intervention. 
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