1. (15 pts) The figure shows two infinite planes of thickness t, whose separation is $2d$. Both are conductors and have a surface charge density of $+\sigma$ and $-\sigma$ as shown in the drawing.

a) In unit vector notation, what is the electric field between the two planes?

- E goes from positive to negative \Rightarrow $+$ \hat{z} direction
- Use Gaussian pillbox

$$\oint E \cdot dA = \frac{\sigma}{\varepsilon_0}$$

$$\vec{E} = \frac{\sigma}{\varepsilon_0} \hat{z}$$

Note that unlike with insulators, you do not find each E separately and add.

b) In unit vector notation, what is the electric field inside the upper plane?

the planes are conductors

$\Rightarrow \vec{E} = 0$

c) What is the potential difference between the lower surface ($z = d$) of the upper plane and the upper surface ($z = -d$) of the lower plane?

This is a uniform (constant) electric field

\Rightarrow can use $\Delta V = E \Delta d$

$$\Delta V = E(2d) = \frac{2\sigma d}{\varepsilon_0}$$
Name: Solution

2. (15 pts) Three charges are located at the corners of an equilateral triangle. Each side of the triangle has a length d. A point P is located in the center of the triangle, and the center of a coordinate system is also located there.

a) What is the electric field at point P in unit vector notation?

Together, the +2Q charges will create an E field going straight up (by symmetry)

$$\vec{E}_{2Q} = 2 \left(\frac{2Q}{4\pi \epsilon_0 d^2} \right) \sin 30^\circ \hat{j} = \frac{Q}{2\pi \epsilon_0 d^2} \hat{j}$$

$$\vec{E}_{4Q} = \frac{4Q}{4\pi \epsilon_0 d^2} (-\hat{j}) = -\frac{Q}{\pi \epsilon_0 d^2} \hat{j}$$

$$\vec{E}_P = \vec{E}_{2Q} + \vec{E}_{4Q} = \frac{Q}{\pi \epsilon_0 d^2} \left(\frac{1}{2} - 1 \right) \hat{j} = -\frac{3Q}{2\pi \epsilon_0 d^2} \hat{j}$$

b) If $V = 0$ at infinity, what is the electric potential at point P?

Use $V = \frac{Q}{4\pi \epsilon_0 r}$ with $r = \frac{d}{\sqrt{3}}$

$$V = \frac{+2Q}{4\pi \epsilon_0 \frac{d}{\sqrt{3}}} + \frac{2Q}{4\pi \epsilon_0 \frac{d}{\sqrt{3}}} + \frac{Q}{4\pi \epsilon_0 \frac{d}{\sqrt{3}}}$$

$$= \frac{3Q}{\pi \epsilon_0 d} = \frac{2\sqrt{3}Q}{\pi \epsilon_0 d}$$

(c) How much energy was required to assemble the three charges from infinity?

For a pair of point charges $U = \frac{Q_1 Q_2}{4\pi \epsilon_0 r}$ (from $U = qV$)

Add up all 3 possible pairs

$$U = \frac{(2Q)(2Q)}{4\pi \epsilon_0 d} + \frac{(2Q)(2Q)}{4\pi \epsilon_0 d} + \frac{(2Q)(2Q)}{4\pi \epsilon_0 d}$$

$$= \frac{4Q^2}{\pi \epsilon_0 d} + \frac{4Q^2}{\pi \epsilon_0 d} + \frac{4Q^2}{\pi \epsilon_0 d}$$

$$= \frac{12Q^2}{\pi \epsilon_0 d}$$

$$= \frac{5Q^2}{\pi \epsilon_0 d}$$
3. (15 pts) The figure shows the end view of a long rod of radius a, which is surrounded by a thin concentric cylinder of radius b. If both are insulators, the inner rod has a surface charge density of $+\sigma$, and the outer cylinder a surface charge density of -2σ on its inner surface.

a) What is the electric field between the rod and cylinder?

We "choose" a Gaussian cylinder of radius r.

\[
\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\text{enc}}}{\varepsilon_0}
\]

\[
= \varepsilon_0 \frac{\sigma}{(a - r) l} \cdot r
\]

\[
\Rightarrow E = \frac{\sigma}{\varepsilon_0} \frac{a}{r}
\]

\[\text{(Note: } \frac{\sigma}{(a - r) l} = \frac{2\sigma}{\pi a} \text{)}\]

b) What is the electric field outside the cylinder?

Now the Gaussian cylinder encloses both of the cylinders.

\[
\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\text{enc}}}{\varepsilon_0}
\]

\[
= \varepsilon_0 \frac{\sigma}{(a - r) l} \cdot r - \varepsilon_0 \frac{-2\sigma}{(2\pi a) l} \cdot (2\pi r l) + \varepsilon_0 \frac{(\sigma) (2\pi a l)}{(2\pi a) l}
\]

\[
\Rightarrow E = \frac{\sigma}{\varepsilon_0} \left(\frac{a - 2b}{r} \right)
\]

\[\text{(Note: } a > b)\]

\[\text{c) What is the electric field inside the rod?}\]

The e.f. field in this case is zero since \(q_{\text{enc}} = 0 \Rightarrow \oint \mathbf{E} \cdot d\mathbf{A} = 0 \Rightarrow E = 0 \)
4. (15 pts) Consider the two conducting infinite sheets shown in
the drawing. If the total charge densities (both surfaces) are as
indicated, surfaces "2" and "3" are separated by a distance \(d \), and
the charge density on the right side of the right sheet (surface 4) is
\(+\sigma \).

\[\oint E \cdot dA = \frac{q_{\text{enc}}}{\varepsilon_0} \]
\[E \cdot A = \frac{\sigma A}{\varepsilon_0} \]
\[E = \frac{\sigma}{\varepsilon_0} \]

Total charge per unit area
\(+3\sigma \)
\(-2\sigma \)

b) What is the magnitude of the electric field between surfaces 2 and 3?
\[\oint E \cdot dA = \frac{q_{\text{enc}}}{\varepsilon_0} \]
\[q_{\text{enc}} = \frac{3\sigma A}{\varepsilon_0} \]
\[E \cdot A = \frac{3\sigma A}{\varepsilon_0} \]
\[E = \frac{3\sigma}{\varepsilon_0} \]

c) What is the potential between surfaces 1 and 4?
The potential difference btw. 1+2, and 3+4 is zero since the sheets are
conductors. Therefore the potential btw. 1+4 = potential btw. 2+3
\[\Delta V = -\int E \cdot ds = -\int \frac{3\sigma}{\varepsilon_0} ds = -\frac{3\sigma}{\varepsilon_0} d \]

d) What is the charge density on surface 1?
\(\sigma \) (see diagram)
5. (15 pts) The figure shows three concentric conducting thin spherical shells of radii \(a\), \(b\), and \(c\); with total charge of \(-7Q\), \(+5Q\), and \(+3Q\) on each shell, respectively.

5a) What is the charge on the outer surface of the shell with radius \(c\)?

Net charge on \(a + b\) is \(-7Q + 5Q = -2Q\)

\(\Rightarrow\) Charge on inner surface of \(c\) is \(-2Q\)

Charge on outer surface of \(c\) is \(q_{\text{out}} = q_{b} + q_{\text{in}} = +3Q - +2Q = +Q\)

5b) What is the electric potential difference between \(b\) and \(c\)?

Outside a given sphere, can treat it like a point charge at \(c\) (assume just outside \(c\))

\(V_{c} = \frac{-7Q}{4\pi\epsilon_{0}b} + \frac{5Q}{4\pi\epsilon_{0}b} + \frac{3Q}{4\pi\epsilon_{0}c}\)

\(\text{where } c = c\)

\(V_{b} = \frac{-7Q}{4\pi\epsilon_{0}b} + \frac{5Q}{4\pi\epsilon_{0}b} + \frac{3Q}{4\pi\epsilon_{0}c}\)

Potential due to \(c\) is constant everywhere inside \(c\)

\(V_{b} - V_{c} = \frac{2Q}{4\pi\epsilon_{0}b} + \frac{2Q}{4\pi\epsilon_{0}c} = \frac{2Q}{4\pi\epsilon_{0}} \left(\frac{1}{c} - \frac{1}{b} \right)\)

5c) What is the net flux through a Gaussian surface located between \(b\) and \(c\)?

\(\varepsilon_{0} \Phi = q_{\text{enc}}\)

\(\Phi = \frac{q_{\text{enc}}}{\varepsilon_{0}}\)

\(= \frac{q_{a} + q_{b}}{\varepsilon_{0}}\)

\(\Phi = -\frac{2Q}{\varepsilon_{0}}\)
6. (18 pts) A sphere of radius R and volume charge density +\(\rho \) sits atop an infinite plane of surface charge density +\(\sigma \) as shown in the figure.

\[
q = \rho V = \sigma A
\]

\[
V = \frac{4}{3} \pi R^3
\]

\[
E = \frac{\rho R}{\varepsilon_0} + \frac{\sigma}{2\varepsilon_0}
\]

\[
E_{\text{plane}} = \frac{\sigma}{2\varepsilon_0}
\]

\[
\frac{\partial E}{\partial R} = \frac{\rho R}{\varepsilon_0}
\]

\[
\frac{\partial E}{\partial R} = \frac{\rho R}{\varepsilon_0}
\]

\[
E_{\text{plane}} = \frac{\sigma}{2\varepsilon_0}
\]

\[
\text{a) What is the electric field at point } P \text{ on the top of the sphere?}
\]

\[
\vec{E} = E_{\text{sphere}} + E_{\text{plane}}
\]

\[
E_{\text{sphere}} = \frac{1}{4\pi\varepsilon_0} \frac{\rho V}{R^2}
\]

\[
E_{\text{plane}} = \frac{\sigma}{2\varepsilon_0}
\]

\[
\text{b) How much work would be required to raise the sphere by a distance } R?
\]

\[
W = -\sigma V Q = -\sigma \left[(V_{\text{sphere, f}} + V_{\text{plane, f}}) - (V_{\text{sphere, i}} + V_{\text{plane, i}}) \right]
\]

\[
V_{\text{sphere}} = V_{\text{plane}} = \frac{\sigma R}{2\varepsilon_0}
\]

\[
W = \frac{\sigma R^2}{2\varepsilon_0} \frac{\theta_{\text{sphere}}}{2\varepsilon_0} = \frac{\sigma R^2}{2\varepsilon_0} \frac{4}{3} \pi R^3 = \frac{2\sigma\pi R^4}{3\varepsilon_0}
\]